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Preface
These are a fraction of the lecture notes for the Solarnet Summer School
- Solar spectropolarimetry: From virtual to real observations. These notes
are extracted from the AS5004 - Astrophysical Spectra course as given at
Stockholm University. The latter are very much a work in progress and draw
from many different sources. We want to give explicit credit to the most
important ones here:

• Handwritten lecture notes by Alexis Brandecker

• The lecture notes “Radiative transfer in stellar atmospheres” by Robert
J. Rutten

• The lecture notes “The generation and transport of radiation” by Robert
J. Rutten

• The book “Radiative processes in astrophysics” by George B. Rybicki
and Alan P. Lightman.

• The book “Astrophysics of Gaseous Nebula and Active Galactic Nuclei”
by Donald E. Osterbrock

As these notes are a work in progress they will be continually updated during
the course. Please send me an email if you find (or suspect) any errors.

Jaime de la Cruz Rodŕıguez & Jorrit Leenaarts
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1 Introduction
Electromagnetic radiation (from now on just radiation or photons) has been
and will remain the primary medium from which we obtain information from
astrophysical objects. Cosmic rays – which consist of protons, nuclei of heav-
ier elements and electrons – and neutrinos are highly interesting other sources
of information. They are however emitted by a much more restricted range
of sources. Thus they cannot provide as wide a view of the Universe as
radiation.

Photons do not decay, so they can carry information over literally cosmic
distances as long as they are not absorbed by intervening matter. We can
measure the direction, energy distribution as a function of wavelength (the
spectrum) and direction of oscillation (the polarization state) of radiation
and the time variation of these quantities, which all can be used to infer
properties of astrophysical objects.

Radiation is important for another reason: it influences the physical struc-
ture of many objects. It is for example an energy transport mechanism in
stars, stellar winds can be driven by radiation pressure, starlight can heat the
interstellar medium around them, and radiation was the primary contributor
to the cosmic energy density during the radiation-dominated era in the early
Universe.

Knowledge of the formation and transport of electromagnetic radiation is
thus essential for an astrophysicist. In these notes we will have a closer look
at a macroscopic description of radiation and its interaction with matter,
with the main quantity being called intensity. We will also look at the
detailed processes on the scale of atoms and molecules that can absorb and
emit photons. We will then develop equations that couple the macroscopic
description of radiation to the microscopic processes, so that we can describe
the expected radiation given the properties of the emitting material, and
conversely, given observed radiation, infer properties of the source.
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10 CHAPTER 2. BASIC RADIATIVE TRANSFER

By defining Iν per infinitesimally small time interval, area, band width and solid an-
gle, Iν represents the macroscopic counterpart to specifying the energy carried by a bunch
of identical photons along a single “ray”. Since photons are the basic carrier of electro-
magnetic interactions, intensity is the basic macroscopic quantity to use in formulating
radiative transfer1. In particular, the definition per steradian ensures that the intensity
along a ray in vacuum does not diminish with travel distance — photons do not decay
spontaneously.
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ϕ
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Figure 2.1: Solid angle in polar coordinates. The area of the sphere with radius r limited by (θ, θ + ∆θ)
and (ϕ, ϕ + ∆ϕ) is r2 sin θ ∆θ ∆φ so that ∆Ω = sin θ ∆θ ∆ϕ.

Mean intensity. The mean intensity Jν averaged over all directions is:

Jν(r⃗, t) ≡
1
4π

∫

Iν dΩ =
1
4π

∫ 2π

0

∫ π

0
Iν sin θ dθ dϕ. (2.2)

Units: erg cm−2 s−1 Hz−1 ster−1, just as for Iν . In axial symmetry with the z-axis
(θ ≡ 0) along the axis of symmetry (vertical stratification only, “plane parallel layers”) Jν

simplifies to, using dΩ = 2π sin θ dθ = −2π dµ with µ ≡ cos θ:

Jν(z) =
1
4π

∫ π

0
Iν(z, θ) 2π sin θ dθ =

1
2

∫ +1

−1
Iν(z, µ) dµ. (2.3)

This quantity is the one to use when only the availability of photons is of interest, irrespec-
tive of the photon origin, for example when evaluating the amount of radiative excitation
and ionization.

Flux. The monochromatic flux Fν is:

Fν(r⃗, n⃗, t) ≡
∫

Iν cos θ dΩ =
∫ 2π

0

∫ π

0
Iν cos θ sin θ dθ dϕ. (2.4)

Units: erg s−1 cm−2 Hz−1 or W m−2 Hz−1. This is the net flow of energy per second
through an area placed at location r⃗ perpendicular to n⃗ . It is the quantity to use for spec-
ifying the energetics of radiation transfer, through stellar interiors, stellar atmospheres,

1Except for polarimetry, which needs three more Stokes parameters discussed in Section 6.1 on page 137.

Figure 1: Solid angle in spherical coordinates. The area of the sphere with radius
r limited by (θ, θ+∆θ) and (φ, φ+∆φ) is r2 sin θ∆θ∆φ so that ∆Ω = sin θ∆θ∆φ.
Adapted from Rutten (2003).

2 Solid angle
In order to properly describe radiation, we need to introduce the concept of
solid angle. This is best done in analogy with the concept of angle. The
angular size of an object in a 2D plane is seen from the origin is the length
of the projection of the object on the unit circle. This is of course how the
radian is defined, and thus the maximum angular size of an object is:∫ 2π

0

dφ = 2π. (2.1)

Similarly we can define the solid angle as the surface area of the projection
of an object on the unit sphere centred on the origin. So, an object that
completely encloses the origin has a solid angle of

Ω =

∫ 2π

0

∫ π

0

sin θ dθ dφ = 4π. (2.2)

An infinitesimal solid angle dΩ can be interpreted as an infinitesimal surface
on the unit sphere. In spherical coordinates:

dΩ = sin θ dθ dφ (2.3)

We will use solid angle in the definition of intensity.
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Figure 2: Definition of intensity. Photons fly through the surface with area ∆A
located at ~r, in a solid angle ∆Ω around the direction l̂. For simplicity the normal
n̂ of ∆A is taken parallel to l̂ in this figure. The energy carried by these photons
is proportional to ∆A and ∆Ω if they are chosen so small that the radiation field
is constant across these intervals.

3 Radiation, intensity and flux

3.1 Basic properties of radiation
Radiation can be described as waves with different frequencies or as a stream
of photons with different energies. In the wave description the frequency ν,
wavelength λ and the speed of light in vacuum c are related as

ν =
c

λ
. (3.1)

The energy of a photon associated with a frequency ν is given by

E = hν =
hc

λ
, (3.2)

where h is Planck’s constant. One can express photon energy or wave fre-
quency with a formal temperature as well:

T =
E

k
=
hν

k
=
hc

λk
, (3.3)

where k is Boltzmann’s constant.
In astronomy wavelengths are often expressed in units of Ångström (with

symbol Å), which is 10−10 m = 0.1 nm.

3.2 Definition of intensity
The fundamental quantity with which we shall describe radiation is the in-
tensity Iν . It is defined so that for an area dA with normal n̂ and located
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at ~r, the amount of energy transported through this surface between times
t and t+ dt in the frequency band (ν, ν + dν) in a cone with solid angle dΩ
around direction l̂ is

dE = Iν(~r, l̂, t) (n̂ · l̂) dA dt dν dΩ. (3.4)

The intensity can be expressed in various units, commonly used units are:

[Iν ] = W m−2 Hz−1 ster−1 (3.5)
[Iν ] = erg s−1 cm−2 Hz−1 ster−1 (3.6)
[Iλ] = W m−2 m−1 ster−1 (3.7)

In Eq. 3.7 the intensity is defined for a wavelength band instead of a fre-
quency band. The conversion from intensity per frequency unit to intensity
per wavelength unit can be computed using the fact that the integration of
intensity over a part of the spectrum must give the same answer, irrespective
of whether we express it in frequency or wavelength units. Therefore∫ ν2

ν1

Iν dν =

∫ λ(ν2)

λ(ν1)

Iν
dν

dλ
dλ

=

∫ λ(ν1)

λ(ν2)

Iν
ν2

c
dλ

=

∫ λ(ν1)

λ(ν2)

Iλ dλ (3.8)

Note that in the second equation the integration direction is reversed and so
compensates for the minus sign in the derivative dν/dλ. The conversion of
intensity from frequency to wavelength is thus given by:

Iλ =
ν2

c
Iν . (3.9)

The advantage of the intensity is that it is constant along a ray, and thus
naturally accounts for the fact that photons to not decay. To see this we can
look at the energy carried by rays during a time interval dt and a frequency
band dν passing through two surfaces dA1 and dA2 located a distance r
apart. Because photons do not decay, we know that the energies must be
equal:

dE1 = Iν ,1 dA1 dΩ1 dt dν = dE2 = Iν ,2 dA2 dΩ2 dt dν. (3.10)
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Figure 3: Intensity is conserved along a ray.

The solid angle that dA2 subtends as seen from dA1 is just

dΩ1 =
dA2

r2
, (3.11)

and likewise
dΩ2 =

dA1

r2
. (3.12)

Substitution into Eq. 3.10 shows that

Iν ,1 = Iν ,2. (3.13)

This means that intensity is conserved along a ray as long as no processes
act to add or remove photons from a beam. An alternative expression of the
same result is

dIν
ds

= 0, (3.14)

where s measures the length along the ray.

3.3 Additional radiation quantities
Total intensity If one integrates the intensity over frequency or wave-
length one obtains the the total intensity:

I(~r, l̂, t) =

∫ ∞

0

Iν dν =

∫ ∞

0

Iλ dλ (3.15)

This is the total energy passing through a unit area per unit time per unit
solid angle in the direction l̂. It has the following units:

[I] = W m−2 ster−1. (3.16)
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Mean intensity Integrating the intensity over all directions (all solid an-
gles), and dividing by the maximum solid angle 4π yields the mean intensity

Jν(~r, t) =
1

4π

∮
Ω

Iν dΩ =
1

4π

∫ 2π

0

∫ π

0

Iν sin θ dθ dφ. (3.17)

Mean intensity is a somewhat confusing name, as it is not obvious over which
dependency the mean is computed: direction, frequency, time or location. A
better name is angle-averaged intensity. The mean intensity has the same
units as intensity:

[Jν ] = W m−2 Hz−1 ster−1. (3.18)

Flux The monochromatic flux ~Fν at a location ~r is defined as the net
radiative energy flow at that location. It is a vector, it has a magnitude and
a direction of the flow. Formally, it is defined as

~Fν(~r, t) =

∮
Iν(~r, l̂, t) l̂ dΩ. (3.19)

The flux in a specific direction n̂ is defined as the net flow of energy
through a unit area placed perpendicular to n̂ per unit time (see Fig. 4). It
can be computed from the intensity as

Fν(~r, n̂, t) =

∮
Iν(~r, l̂, t) (n̂ · l̂) dΩ =

∫ 2π

0

∫ π

0

Iν cos θ sin θ dθ dφ. (3.20)
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Figure 5: Flux from a uniformly bright sphere.

The last equality is valid using spherical coordinates with the z-axis aligned
with n̂. The units are:

[Fν ] = W m−2 Hz−1. (3.21)

Note the difference between intensity and flux. An isotropic radiation field
(which means that Iν does not depend on the direction l̂) has no net energy
flux, but a non-zero intensity. This can be seen by simply performing the
integral in Eq. 3.20 with constant Iν :

Fν(~r, n̂, t) =

∫ 2π

0

∫ π

0

Iν cos θ sin θ dθ dφ

= 2πIν

∫ π

0

cos θ sin θ dθ

= 2πIν

(
1

2
sin2 θ

∣∣∣∣π
0

)
= 0 (3.22)

Furthermore, the flux is not invariant along rays, unlike the intensity.
This is illustrated by the example in the next section.

3.4 Flux from a uniformly bright sphere
Let’s look at the relation between the flux and the intensity emitted by a
sphere of radius R whose surface emits the same intensity Iν in all directions.
This can be considered as a simple model of light emitted by a star.

Imagine we are in a point P at a distance r from the centre of the sphere
(see Fig. 5). The intensity along rays through P is Iν if the ray intersects the
sphere, and zero otherwise. The intensity is non-zero for all angles θ ≤ θc,
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with
sin θc =

R

r
. (3.23)

For symmetry reasons, the flux at P must be directed radially outward from
the sphere, and is given by

Fν =

∫ 2π

0

∫ θc

0

Iν cos θ sin θ dθ dφ

= πIν sin
2 θc

= πIν

(
R

r

)2

(3.24)

This is the familiar inverse square law: the flux from an isotropic source
decreases with the square of the distance. We can also compute the total
luminosity of the sphere by integrating the flux over the surface of the sphere
with radius r:

L = 4πr2 · πIν
(
R

r

)2

= 4π2R2Iν . (3.25)

As expected, the total luminosity of the sphere is independent of r. Also
note that the flux at the surface of the sphere r = R is simply

Fν = πIν . (3.26)

Combining Eqs. 3.25 and 3.26 yields a relation between luminosity and flux
that you might be familiar with from your classes on stellar evolution:

L = 4πR2Fν , (3.27)

which means that the luminosity is simply the product of the surface area of
the star times the surface flux.

4 Radiative transfer

4.1 Definitions
So far we have only considered radiation in vacuum, without interaction with
matter. In vacuum dIν/ds = 0 along a ray. To model intensity creation and
destruction we introduce a number of new macroscopic definitions.
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Figure 6: Definition of emissivity.

ds

Figure 7: Left: A beam
of cross section dA travel-
ling through a region with
absorbing particles. Right:
view at the region along the
beam direction.

Emissivity The monochromatic emissivity jν is defined as the energy emit-
ted per unit volume per unit time per unit bandwidth and per unit solid
angle:

dE = jν dV dt dν dΩ. (4.1)

It has units of W m−3 Hz−1 ster−1. Imagine a volume dV with cross section
dA and thickness ds in which the emissivity is non-zero (see Figure 6). A
beam of radiation enters the volume on the left, and exits it on the right.
The emissivity will add energy to the beam. The difference in energy is given
by

E2 − E1 = (Iν,2 − Iν,1) dΩdν dt dA (4.2)
= jν dΩdν dt dA ds (4.3)

Therefore a beam traveling a distance ds though a medium with non-zero
emissivity increases its intensity by

dIν = jν ds (4.4)

Extinction The monochromatic extinction coefficient is defined as the
fraction of energy removed from a beam as it travels a distance ds through
a medium:

dIν = −ανIν ds. (4.5)

The extinction coefficient has units “per length”, but can also be interpreted
as “area per volume” (m2 per m−3). The latter interpretation follows nat-
urally from a microscopic model of particles, each with an effective cross
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section σν (see Figure 7). The extinction coefficient is then the fraction of
the cross-section of a beam blocked by absorbing particles per unit length. If
the particle density is n then αν = σνn. This view of absorption of radiation
is valid only if the particles are distributed at random through the medium,
and the “size” of the particles σ1/2

ν is much smaller than the mean interpar-
ticle distance n−1/3. This is usually the case in the outer layers of stars and
interstellar material, but not necessarily in the dense interior of stars.

Extinction can also be defined as a cross section per unit mass κν . Then
the extinction coefficient becomes αν = κνρ, with ρ the mass density.

4.2 The radiative transfer equation
If a beam travels through a medium with both emission and extinction then

dIν = jν ds− αν Iν ds, (4.6)

or
dIν
ds

= jν − αν Iν . (4.7)

Emissivity only If a medium has zero extinction then the radiative trans-
fer equation reduces to

dIν
ds

= jν (4.8)

which has the solution

Iν(s) = Iν(s0) +

∫ s

s0

jν(s
′) ds′. (4.9)

In this case the intensity can increase indefinitely as long as the beam travels
through the medium.

Absorption only In the case of jν = 0 we need to solve
dIν
ds

= −ανIν . (4.10)

This equation can be rewritten as
1

Iν

dIν
ds

= −αν

d ln Iν
ds

= −αν
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which can be integrated directly to yield

Iν(s) = Iν(s0) exp

(
−
∫ s

s0

αν(s
′) ds′

)
. (4.11)

The larger the absorption coefficient, the quicker intensity is attenuated as
it travels through a medium.

Optical path length We define the monochromatic optical path length
τν as

τν =

∫ s

s0

αν(s
′) ds′ (4.12)

This is a dimensionless quantity. An equivalent definition is

dτν = αν ds. (4.13)

Let us now consider a slab of material of thickness D between s = 0 and
s = D. A beam passes through this slab at a right angle. The total optical
path length through the slab is just

τν(D) =

∫ s

0

αν(s) ds (4.14)

One can also say that the slab has a monochromatic optical thickness τν(D).
It is a measure of how easily photons can penetrate the slab, because Eq. 4.11
can be written in terms of the optical thickness in a particularly easy form:

Iν(D) = Iν(0)e
−τν(D). (4.15)

The intensity decreases exponentially as a function of the optical path length.
A slab is called optically thick if τν > 1 and called optically thin if τν < 1.

We can now compute how deep in terms of optical path length a beam
can propagate into an object. It is the average optical path length a photon
can propagate into the object before it is absorbed. It is given by

< τν >=

∫∞
0
τνe

−τνdτν∫∞
0

e−τνdτν
= 1. (4.16)

If the object is homogeneous so that αν(s) is constant we can also compute
the mean geometrical path length (length expressed in meters) that a photon
travels before it is absorbed by the medium:

lν =
< τν >

αν

=
1

αν

(4.17)
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Source function The source function Sν is defined as

Sν =
jν
αν

. (4.18)

It has the same units as intensity: W m−2 Hz−1 ster−1. We can use it,
together with the definition of optical path length to recast the transport
equation into an elegant form:

dIν
ds

= jν − αν Iν

dIν
ανds

=
jν
αν

− Iν

dIν
dτν

= Sν − Iν (4.19)

The form of the radiative transfer equation given in Eq. 4.19 is often just
called the transport equation. It describes the change of intensity per unit
optical path length along the beam.

4.3 Formal solution of the transport equation
We will now find the general solution to the transfer equation, which means
an expression for Iν as a function of the optical path length τν given a known
source function Sν which is allowed to depend on τν .

dIν
dτν

= Sν − Iν ,

dIν
dτν

+ Iν = Sν ,(
dIν
dτν

+ Iν

)
eτν = Sνe

τν ,

dIνe
τν

dτν
= Sνe

τν ,

Iν(τν)e
τν − Iν(0) =

∫ τν

0

Sν(τ
′
ν) e

τ ′ν dτ ′ν . (4.20)

As a final step we move Iν(0) to the right-hand side and divide by eτν to
arrive at the formal solution of the transport equation:

Iν(τν) = Iν(0)e
−τν +

∫ τν

0

Sν(τ
′
ν) e

−(τν−τ ′ν) dτ ′ν . (4.21)
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Figure 8: Solution to the transfer equation in a homogeneous slab of geometrical
thickness D and optical thickness 5. Left-hand panel: Iν(0) = 0, Sν = 1. The
red line shows the linear approximation (Eq. 4.24) valid at small optical depth.
Right-hand panel: Iν(0) = 1, Sν = 0.2.

This is the single most important equation in the theory of radiative trans-
fer. The first term on the right-hand side is the initial intensity attenuated
because of the optical path length. The second term is the integral of all
local contributions Sν(τ

′
ν) to the intensity along the beam, also attenuated

because of the optical path length between τν and τ ′ν .

4.4 Radiation from a homogeneous medium
Let’s look at the radiation in a homogenous layer to get some feeling for the
behaviour of the formal solution. Again we consider a layer of geometrical
thickness D and constant jν and αν throughout the layer, so that Sν is also
constant in the layer and the optical thickness τν = ανD. The formal solution
for radiation exiting this layer then reduces to

Iν(τν) = Iν(0) e
−τν + Sν (1− e−τν ). (4.22)

If the layer is very optically thick (τν � 1), then

Iν(τν) ≈ Sν . (4.23)
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Figure 9: Solution to the transfer equation in a slab with constant source function,
but a frequency-dependent opacity. The blue line shows the source function in the
slab, the green line the incoming intensity and the red curve the outgoing intensity.
Left-hand panel: Iν(0) = 0, Sν = 1, τ∆ν=5 = 0.01, and τ∆ν=0 = 1.01 . Right-hand
panel: Iν(0) = 1, Sν = 0.1, τ∆ν=5 = 0.01, and τ∆ν=0 = 10.01.

Incident radiation cannot penetrate the layer and one receives an intensity
equal to the source function. If the layer is optically thin (τν � 1) then

Iν(τν) = Iν(0) + τν (Sν − Iν(0)) , (4.24)

which means that incident radiation travels mostly straight through the layer,
with a slight modification owing to absorption and emission. In general, if
Sν > Iν(0) then energy (or equivalently: photons) is added to the beam as it
propagates; if Sν < Iν(0) energy is removed from the beam. Figure 8 shows
solutions to Eq. 4.22 for two different cases.

So far we have looked at the behaviour of the intensity at a single fre-
quency. We are often also interested in the variation of intensity with fre-
quency, i.e., the shape of the spectrum. As an initial example we can look at
a homogeneous slab with a source function that is independent of frequency,
but an extinction coefficient that varies with frequency. Figure 9 shows two
examples where the extinction coefficient varies as a so-called Voigt function
(for now it’s sufficient to know that this is a sharply-peaked function, in
Section 8.2 the details are given). As you can see it is possible for such a
slab to generate an emission line, or an absorption line, depending on the
values of Sν and Iν(0). Also note that the absorption line has a very flat
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Figure 10: Geometry of the plane-parallel stellar atmosphere. The height coor-
dinate z increases outwards from the star, while the optical depth coordinate τν
increases inward. The angle between the ray and the vertical is θ, with µ = cos θ.

core, even though the extinction coefficient is sharply-peaked in frequency.
This is because Eq. 4.22 implies Iν(τν) ≈ Sν for the substantial frequency
interval around ∆ν = 0 where τν � 1.

4.5 Radiation from an optically thick medium
The assumption of a homogenous medium is not very realistic. In most
cases the absorption coefficient and emissivity depend on the location in the
medium. We will now relax the assumption of homogeneity and allow for
variation along one direction, say along the z axis. If the medium is in
addition optically thick at all frequencies (one cannot look through it) then
one has a simple model to describe the atmosphere of a star, called a plane
parallel atmosphere. We assume that the atmosphere has finite extent, so
that αν = 0 and and jν = 0 for z > zmax. For outside observers looking at
such an atmosphere it is natural to wonder from how deep in the atmosphere
the photons that we see originate. To facilitate this we define a quantity that
measures “deepness” in the atmosphere, called radial optical depth τ ′ν . It is
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defined so that for a location z inside the atmosphere:

τ ′ν(z) = −
∫ z

∞
αν(z

′) dz′ (4.25)

It is very similar to the optical path length, except that we integrate against
the propagation direction of the beam, instead of along it: dτ ′ν = −αν ds,
whereas dτν = αν ds. To facilitate ease of notation we will drop the prime on
the optical depth and use τν for both radial optical depth as optical thickness.
Which quantity is meant is (hopefully) clear from the context.

For rays that are not parallel to the z-axis, but instead have an angle
θ with the z-axis, with µ = cos θ we can define an angle-dependent optical
depth τµν :

dτµν =
dτν
cos θ

=
dτν
µ
. (4.26)

The transport equation then becomes

µ
dIν(τν , µ)

dτν
= Iν(τν , µ)− Sν(τν), (4.27)

where the dependency of Iν means “at the radial optical depth τν and in the
direction µ” and the dependency of Sν means that it depends only on radial
optical depth but not on direction.

Now imagine you are sitting at a radial optical depth τν inside the atmo-
sphere. What is the inward intensity at that point. Rays traveling into the
star have µ < 0, so we can write the formal solution as

I−ν (τν , µ) = −
∫ τν

0

Sν(tν) e
−(tν−τν)/µ

dtν
µ
. (4.28)

For outgoing rays (µ > 0) the formal solution is

I+ν (τν , µ) =

∫ ∞

τν

Sν(tν) e
−(tν−τν)/µ

dtν
µ
. (4.29)

For an observer outside of the atmosphere (so at τν = 0) and for an angle
µ > 0 this expression simplifies to

I+ν (0, µ) =

∫ ∞

0

Sν(tν) e
−tν/µ

dtν
µ
. (4.30)
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Figure 11: The Eddington Barbier approximation for µ = 1 . The surface of the
colored area under the red curve is approximately equal to the source function at
τν = 1 (indicated with the blue filled circle).

In words, this equation means that the intensity escaping from a stellar
atmosphere (or any optically thick object) is set by the source function from
the top of the atmosphere (optical depth τν = 0) to an optical depth where
the exponential drives the integrand to zero (say τν = 10 or so.).

At what height does the radiation typically escape? We can compute this
by substituting a series expansion of the source function into Eq. 4.30. So
we assume

Sν(τν) =
∞∑
n=0

an τ
n
ν , (4.31)

and use the mathematical identity∫ ∞

0

= xne−xdx = n! (4.32)

to find
I+ν (τν = 0, µ) = a0 + a1µ+ 2a2µ

2 + · · · . (4.33)
If we truncate the expansion after the first two terms we get the Eddington-
Barbier approximation

I+ν (τν = 0, µ) ≈ Sν(τν = µ). (4.34)
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Figure 12: The Planck function per frequency interval for different temperatures.

In words this approximation states that if one observes a stellar atmosphere
under a viewing angle µ, then one sees an intensity that is approximately
equal to the source function at radial optical depth τν = µ.

5 Radiation in thermodynamic equilibrium

5.1 Black-body radiation
A perfect black body emits radiation with an intensity equal to to the Planck
function Bν :

Bν =
2hν3

c2
1

ehν/kT − 1
. (5.1)

The Planck function has the same units as intensity, and in terms of wave-
length intervals it is given by:

Bλ = Bν

∣∣∣∣dνdλ
∣∣∣∣ = 2hc2

λ5
1

ehc/λkT − 1
. (5.2)

For large values of hν/kT the Wien approximation is sometimes used:

Bν ≈ 2hν3

c2
e−hν/kT . (5.3)
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If hν/kT � 1 then the more common Rayleigh-Jeans approximation is used:

Bν ≈ 2hν2kT

c2
. (5.4)

Note that the derivative of the Planck law with respect to temperature is
always positive.

Wien displacement law The Wien displacement law gives the frequency
νmax where the Planck function peaks, i.e, where

∂Bν

∂ν
= 0. (5.5)

This equation cannot be solved analytically, but has the approximate solu-
tion:

νmax

T
= 5.88× 1010 Hz K−1 (5.6)

If the Planck function is expressed per wavelength unit to find λmax where

∂Bλ

∂λ
= 0. (5.7)

then
λmaxT = 2.90× 10−3 m K−1. (5.8)

Note that
λmax 6=

c

νmax

(5.9)

Stefan-Boltzmann Integrating the Planck function over the whole spec-
trum gives the Stefan-Boltzmann law.

B =

∫ ∞

0

Bν dν =
σ

π
T 4 (5.10)

with
σ =

2π5k4

15h3c2
= 5.67× 10−8 W m−2K−4. (5.11)

The total flux radiated by the surface of a black body is therefore πI = σT 4.
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Even if Fν is not well approximated by flux from a black body, the Stefan-
Boltzmann law can always be used to define an effective temperature:

Teff =

(
F

σ

)1/4

(5.12)

Similarly, one can define a brightness temperature or radiation temperature
Tb(ν) such that

Iν = Bν(Tb). (5.13)

Since Bν is a monotonous function of T , this relation can be used to express
any intensity in units of temperature. This is used in particular in radio
astronomy, where the Rayleigh-Jeans approximation is often applicable. A
motivation for doing this is that the brightness temperature is often related
to physical properties of the emitter, and has a simple unit (K).

5.2 Transfer equation and source function in thermo-
dynamic equilibrium

In order to make the coupling of the macroscopic quantities αν , jν and Sν to
properties of microscopic quantum-mechanical systems (atoms or molecules
for example), we need to investigate the properties of radiation in a homoge-
neous medium in thermodynamic equilibrium (TE). In TE all processes and
states are in equilibrium with each other. Each process is in equilibrium with
the reverse process. This is called detailed balance. As a model system you
can imagine an oven with perfect blackbody walls at a temperature T filled
with some material.

The radiation inside the material must be static in time and isotropic.
Therefore, for any ray, at any frequency, and any time the following must
hold:

dIν
ds

= jν − ανIν = 0, (5.14)

and therefore
jν = ανIν . (5.15)

But we know from thermodynamic theory that the radiation in TE follows
the Planck function:

Iν ,TE = Bν , (5.16)
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and therefore the source function is also the Planck function in TE:

Sν ,TE =
jν
αν

= Bν , (5.17)

6 Matter in thermodynamic equilibrium
Maxwell distribution If the kinetic energy of particles in a gas is in
thermodynamic equilibrium it follows the Maxwellian velocity distribution.
The probability that a particle of mass m has velocity component vx between
vx and vx + dvx is given by

P (vx) dvx =
( m

2πkT

)1/2

e−(1/2)mv2x/kTdvx (6.1)

For the speed v the probability is

P (v) dv =
( m

2πkT

)3/2

4πv2 e−(1/2)mv2/kTdv. (6.2)

In stellar atmospheres and the interstellar medium this relation is usually
true also outside of TE.

Boltzmann distribution In TE, the ratio of particle population between
2 discrete energy levels i and j in a quantum-mechanical system, like a specific
atom or molecule is given by the Boltzmann law:

ni

nj

=
gi
gj

e−(χi−χj)/kT . (6.3)

Here χi is the energy of the bound level i. Normally the ground state of an
atom is defined to have χ = 0. The fraction of all atoms in a given ionization
state in level i is given by

ni

N
=
gi
U

e−χi/kT , (6.4)

with N the total density of the particles in any state and U the partition
function.
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Saha distribution Atoms and molecules can exist in different ionisation
stages. At higher temperatures the higher ionisation stage is typically more
populated. The ratio of densities of an atomic species in ionization stage r
and r + 1 is given by the Saha distribution:

Nr+1

Nr

=
1

ne

2Ur+1

Ur

(
2πmekT

h2

)3/2

e−(χr)/kT . (6.5)

For molecules a very similar formula holds.

Saha-Boltzmann The Saha and Boltzmann law combined give all infor-
mation needed to compute the relative populations in any energy level of
any species of an arbitrary gas mixture. In order to get absolute populations
(number of particles in a given quantum state per unit volume), the two laws
must be augmented with two extra laws: The first one is element conserva-
tion, i.e, the total number density of nuclei of an element is conserved:∑

r

∑
i

Nr,i = Nelement, (6.6)

where the sum is over all ionization stages r and all energy levels i in the ion-
isation state r. In addition we need a charge conservation equation, because
the Saha equation contains the electron density:∑

element

∑
r

ZrNr = ne, (6.7)

where Zr is the charge of ionisation stage r. These equations must in general
be solved numerically, for example with Newton-Raphson iteration. This
might seem a bit off-topic here, but it is an important ingredient of un-
derstanding radiative transfer. If TE is a good approximation, then the gas
density, temperature and the elemental composition (abundances) set all par-
ticle densities, and, as a consequence the extinction coefficients. The source
function is the Planck function. These assumptions underpin a large part of
stellar modelling and the modelling of stellar atmospheres.

7 Matter/radiation interaction
Individual particles of matter have internal (bound) energy states which are
discrete (quantised), which we often denote by En. Interaction between un-
bound (“free”) particles have a continuous distribution of possible energy
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states. A system switches energy state by interaction with either another
system (collision) or photons (emission/absorption). A radiative transition
between two states Eu and El with Eu > El causes a photon of energy

hν = Eu − El (7.1)

to be emitted or absorbed.
We usually distinguish between three types of energy state transitions:

bound-bound, free-free and bound-free. A bound-free transition involves
a system splitting into two, or two systems combining into one. Typical
examples are the ionisation of an atom into an ion-electron pair, or the
break-up of a molecule into smaller molecules and/or atoms (dissociation).

7.1 Bound-bound transitions
There are five processes that cause a transition from one bound state to
another

• spontaneous radiative deexcitation

• radiative excitation

• induced radiative deexcitation

• collisional deexcitation

• collisional excitation

Spontaneous deexcitation A particle in upper level u can decay sponta-
neously to a lower energy level l, while emitting a photon. The probability
that this will occur is defined as the Einstein coefficient Aul: the transition
probability for spontaneous deexcitation per second per particle in state u.
The population level u over time is given as

nu(t) = nu(0)e
−Ault. (7.2)

Heisenberg’s uncertainty principle states that because of the finite lifetime
of the upper level, there is a uncertainty about the energy of the level:

∆E ≈ h

2π∆t
. (7.3)
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The energy of the emitted photon thus exhibits a certain spread around the
value Eu − El. A proper quantum-mechanical treatment gives a Lorentzian
distribution for the photon energy around the line frequency ν0:

ψ(ν − ν0) =
Aul/4π

2

(ν − ν0)2 + (Aul/4π)2
(7.4)

This is the profile function for spontaneous deexcitation of an atom at rest.
It is normalised with respect to frequency and has units Hz−1.

Radiative excitation A photon with the right energy hν can excite a
system from state l to state u. The probability that this happens is given
by:

BluJ
φ

ν0, (7.5)

which is the number of radiative excitations per second per particle in state
l. The energy states have a certain fuzziness, and therefore one needs to
account for the spread in photon energy:

J
φ

ν0 =

∫ ∞

0

Jν φ(ν − ν0)dν. (7.6)

The quantity φ(ν − ν0) is the normalised profile function for spontaneous
excitation.

Induced deexcitation It turns out there is a process that causes a transi-
tion from state u to l in the presence of a photon, called induced deexcitation.
The transition causes an extra photon to be emitted in the same direction
as the first photon. The number of induced deexcitations per second per
particle in state u is given by:

BulJ
χ

ν0, (7.7)

where
J
χ

ν0 =

∫ ∞

0

Jν χ(ν − ν0)dν. (7.8)

Here χ(ν − ν0) is the normalised profile function for induced deexcitation.
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Collisional excitation and deexcitation The transition probability for
collisional processes can be defined with similar coefficients Cul, the number
of collisional deexcitations per second per particle in state u. Clu has a similar
definition.

These coefficients depend on the type of the colliding particles and their
speed. For collisions with electrons we have

Clu = ne

∫ ∞

v0

σlu(v) v f(v) dv, (7.9)

with v0 the threshold velocity for which 1/2mev
2 = hν0,f(v) is usually the

Maxwell distribution and σij a cross section. Note the dependency on the
velocity. The cross sections can in principle be measured in the laboratory,
or computed from quantum mechanics. For many transitions they are not
well known. Note the velocity dependence of Cij. Light particles move
faster than heavy particles, and collide more frequently. For gases where
the electron density is similar to the ion density, electron collisions usually
dominate. For gases that are nearly neutral, collisions with hydrogen are
typically dominant.

7.2 Einstein relations
It turns out that there are relations between Aul, Bul and Blu. To see this
we consider a two-level atom in thermodynamic equilibrium. The number of
radiative transitions from l to u must be equal to the number of radiative
transitions from u to l. If this was not the case then there would be energy
exchange between the particles and the radiation field, which cannot happen
in TE. Based on quantum mechanics one can also prove that all profile func-
tions are equal (ψ = φ = χ) and thus Jν0 = J

χ

ν0 = J
φ

ν0. Therefore we can
write

nlBluJ
χ

ν0 = nuAul + nuBulJ
φ

ν0

Jν0 =
nuAul

nlBlu − nuBul

=
Aul/Bul

nl

nu

Blu

Bul

− 1
. (7.10)
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Then we use the fact that the Boltzmann distribution holds in TE to get

Jν0 =
Aul/Bul

gl
gu

Blu

Bul

ehν/kT − 1
. (7.11)

In TE we also know that Iν = Jν = Bν , and if the profile functions are
narrow, then Jν0 = Bν as well, so

Bν =
Aul/Bul

gl
gu

Blu

Bul

ehν/kT − 1
. (7.12)

By comparing this expression to the formula for the Planck function we find
that:

Aul

Bul

=
2hν3

c2
(7.13)

Blu

Bul

=
gu
gl

(7.14)

These two equations are the Einstein relations. Note that they only depend
on the atomic parameters, they are thus intrinsic properties of the atom and
generally valid. If one coefficient is known, either through measurement or
calculation, then the other two can be computed. The strength of a transition
is normally reported as an oscillator strength flu:

4π

hν
Blu =

πe2

mec
flu. (7.15)

For strong lines flu is of order unity. For other allowed (dipole) transitions
it lies between 10−4 and 10−1. For forbidden lines flu < 10−6.

For the collisional rates the same reasoning holds. The atomic level pop-
ulation does not change in time, and there is no exchange of energy between
the radiation field and the atom. Therefore the rate from l to u must be
equal to the rate from u to l:

nlClu = nuCul. (7.16)

By using the Boltzmann relation we can rewrite this expression as
Cul

Clu

=
gu
gl
e(Eu−El)/kT . (7.17)
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7.3 Emissivity and extinction coefficient
We are now ready to express the macroscopic emissivity and extinction co-
efficient for bound-bound transitions in microscopic quantities, namely the
profile function and the Einstein coefficients.

Emissivity nuAul is the number of spontaneous deexcitatons per second
per m3

hν0nuAul is energy radiated per second per m3

hν0nuAulψ(ν − ν0) is energy radiated per second per m3 per Hz
hν0nuAulψ(ν−ν0)/4π is energy radiated per second per m3 per Hz per stera-
dian

The latter is the definition of emissivity, and we have thus arrived at an
expression for the emissivity for spontaneous deexcitation:

jsponν =
hν0
4π

nuAul ψ(ν − ν0). (7.18)

Extinction coefficient The total energy that is removed from the radia-
tion by line excitation in a volume dV and a time dt is

dEtot
ν = −hν0 nlBluJ

φ

ν0 dV dt

= −hν0 nlBlu

∫
Jνφ(ν − ν0) dν dV dt

= −hν0
4π

nlBlu

∫ ∫
Iνφ(ν − ν0) dΩdν dV dt. (7.19)

The energy taken from a bundle with opening angle dΩ and in a bandwidth
dν is thus

dEbundle
ν = −hν0

4π
nlBluIνφ(ν − ν0) dΩdν dV dt. (7.20)

Now note that dV = dA ds, move all differentials to the left side and note
that dIν = dE/(dΩdν dA dt). Then we find that

dIν
ds

= −hν0
4π

nlBluφ(ν − ν0)Iν . (7.21)
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The extinction coefficient associated with line excitation is therefore

αexc.
ν =

hν0
4π

nlBluφ(ν − ν0). (7.22)

Induced deexcitation adds photons to a beam, and one would think this
would lead to an emissivity. However, induced deexcitation is proportional
to the radiation field Jν0, and therefore behaves much like an opacity. It
is therefore much more convenient to model induced deexcitation as nega-
tive extinction. Using similar reasoning as for excitation one arrives at an
extinction coeffient

αind.
ν = −hν0

4π
nuBulχ(ν − ν0). (7.23)

The total line extinction coefficient then becomes

αline
ν =

hν0
4π

(nlBluφ(ν − ν0)− nuBulχ(ν − ν0)) . (7.24)

This equation can be rewritten in an interesting form:

αline
ν =

hν0
4π

nlBluφ(ν − ν0)

(
1− nuBulχ(ν − ν0)

nlBluφ(ν − ν0)

)
. (7.25)

The line extinction coefficient can be seen to consist of the extinction owing to
radiative excitation, with a correction factor owing to induced deexcitation.
The correction factor is

1− nuBulχ(ν − ν0)

nlBluφ(ν − ν0)
. (7.26)

If it becomes negative then the extinction coefficient becomes negative, and
the equation

dIν
ds

= −ανIν (7.27)

has a solution with exponentially growing intensity. Such a negative ex-
tinction coefficient requires a so-called population inversion: nugl > nlgu.
This is the principle behind lasers, and in an astrophysical context, masers,
which are huge amplification of the intensity in transitions with micrometer
wavelengths, often transitions in molecules. Note however that population
inversion is not possible in a two-level system, at least a third level is required.
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7.4 Source function
Finally we arrive at the expression of the two-level line source function:

Sline
ν =

jν
αν

=
nuAulψ

nlBluφ− nuBulχ

=

Aul

Bul

ψ

φ
nl

nu

Blu

Bul

− χ

φ

. (7.28)

If we furthermore assume that all the profile functions are equal ψ = φ = χ,
and plug in the Einstein relations, then the line source function becomes:

Sline
ν =

2hν3

c2
1

gunl

glnu

− 1
. (7.29)

In case the population ratio follows the Boltzmann distribution (which can
be taken as the definition of Local Thermodynamic Equilibrium) then the
line source function reduces to the Planck function:

Sline
ν0,LTE = Bν . (7.30)

Note that the line source function is nearly frequency-independent because ν3
is almost constant over the small frequency range where the profile function
is non-zero.

8 Line broadening
The profile function of bound-bound transitions is not infinitely sharp, but
broadened owing to a number of different processes. We can distinguish the
following broadening processes:

• natural broadening, due to quantum mechanical effects, as you have
seen before,

• collisional broadening, also called pressure broadening, due to pertur-
bation of the emitting particle by other particles.
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• Doppler broadening, due to particles having different velocities along
the line of sight, which can be further subdivided into:

– thermal broadening because the particles have thermal velocities,
– turbulent broadening, because of gas flows parallel to the line of

sight,
– broadening owing to systematic motions, such as rotation of stars.

• Instrumental broadening, because the instruments with which we ob-
serve have finite spectral resolution. This is not a true broadening
process as it modifies the intensity that we observe in our telescope,
and it is not an intrinsic property of the source.

Typically multiple processes are acting at the same time. We will first discuss
each process individually, and then discuss how to combine various broaden-
ing mechanisms to arrive at the final profile function. Note that the profile
function described by the extinction and emission profiles ψ, φ and χ is
strictly speaking modified only by natural, collisional and turbulent broad-
ening. The actual line profile (i.e., the variation of intensity with frequency
that we observe) is modified by systematic motions and instrumental broad-
ening, and depends on the telescope and instruments that we use.

8.1 Broadening processes
Natural broadening We have already seen how Heisenberg’s uncertainty
principle combined with the finite lifetime of the upper level of a transition
lead to the Lorentzian profile:

ψ(ν − ν0) =
γ/4π2

(ν − ν0)2 + (γ/4π)2
. (8.1)

In case of the two-level atom we simply have γ = Aul. For atoms with
multiple levels we also have to take into account the lifetime of the lower
level, and that the lifetime of a level is determined by all transitions out of
the level, not only the transition that we are interested in. It turns out one
can directly add the Einstein A coefficients to arrive at the correct natural
broadening parameter. So in general we obtain for a transition from level u
to l:

γ = γl + γu =
∑
i<l

Ali +
∑
i<u

Aui, (8.2)
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where the sum over i is taken over all levels that have a lower energy than u
or l and are connected with a radiative transition.

Collisional broadening If a particle suffers a collision while emitting ra-
diation, the phase of the emitted radiation can change suddenly. This adds
uncertainty to the wavelength. Actual computation of the effect in detail is
very complex, but a reasonable description is that the resulting broadening
profile is again a Lorentz function, with broadening parameter

γcol = 2νcol. (8.3)

Here νcol is the collision frequency, which itself is given by

νcol = ncol.σv, (8.4)

where ncol. and v are the number density and average velocity of the colliding
particle, and σ is a cross section. In practice one uses more complex recipes
based on a detailed quantum mechanical calculation to compute γcol..

Doppler broadening Emission from a particle that moves relative to the
observer gets Doppler-shifted. For non-relativistic speeds the frequency shift
is

∆ν = νobs − νemit = νemit
vLOS

c
, (8.5)

where vLOS is the velocity difference between the particle and the LOS. For an
ensemble of particles that emit at slightly different frequencies this leads to
Doppler line broadening. This is often the dominant broadening mechanism.

Thermal broadening The special case of Doppler broadening where the
emitting particles follow the Maxwell velocity distribution is called thermal
broadening. By inserting the relations

v = c
ν − ν0
ν0

, dv =
c

ν0
dν (8.6)

into the Maxwell distribution for a velocity component we can convert it to
the thermal broadening profile φ(ν):

φ(ν)dν =
1√
π∆νD

e
−
(ν − ν0

∆νD

)2

dν, (8.7)
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where the so-called Doppler width ∆νD is given by

∆νD =
ν0
c

√
2kT

m
. (8.8)

The profile function is normalised. In wavelength units the profile function
is

φ(λ)dλ =
1√
π∆λD

e
−

λ− λ0
∆λD

2

dλ, (8.9)

∆λD =
λ0
c

√
2kT

m
. (8.10)

Turbulent broadening If there is a macroscopic velocity field parallel to
the line of sight then this will in general rive rise to a frequency shift of the
line relative to the rest frequency, and asymmetries in the line profile. In
the special case that the spatial scale of the velocities is much smaller than
the photon mean free path (which is 1/αν) and the velocity distribution is
symmetric around zero then one calls it microturbulence. While the turbulent
spectrum in principle can have any form, this kind of turbulence is often
assumed to have a Gaussian distribution. In that case the resulting profile
function is also a Gaussian with Doppler width ∆νD given by

∆νD =
ν0
c
ξturb, (8.11)

where ξturb is called the microturbulent velocity.

8.2 Combining broadening mechanisms
So far we have considered line profiles from different processes separately.
Combining the various processes is simply done by convolving the profiles.
If we have two broadening processes φ(ν) and ψ(ν) are operating together
then the resulting line profile is

ρ(ν) = φ(ν) ∗ ψ(ν) = ψ(ν) ∗ φ(ν)

=

∫ ∞

−∞
φ(ν ′)ψ(ν − ν ′) dν ′ =

∫ ∞

−∞
φ(ν − ν ′)ψ(ν) dν ′. (8.12)
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Figure 13: Various broadening profiles. The frequency is given in different units
for each profile in order to give them similar widths. The Gaussian and Voigt
profiles are given as functions of frequency in Doppler width ∆νD. The Lorentzian
has γ = 4π. The Voigt profile has a = 1. The rotational profile has ∆νmax = 1.
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Convolutions can be performed multiple times after each other to include
more than two processes. The convolution operation preserves the integral
of the functions:∫ ∞

−∞
φ(ν) ∗ ψ(ν) dν =

(∫ ∞

−∞
φ(ν) dν

)(∫ ∞

−∞
ψ(ν) dν

)
. (8.13)

This means that the convolution of two normalized line profiles is also nor-
malized. This means as long as one is interested in line-integrated intensities
only, it does not matter whether the spectrograph can resolve the line profile,
the measured line-integrated intensity does not depend on the resolution of
the instrument.

The convolution of two Lorentzians is a new Lorentzian with a FWHM
γ = γ1 + γ2. The convolution of two Gaussian functions is a new Gaussian
with a width ∆ν2 = ∆ν21+∆ν22 . Thus, when combining thermal and Doppler
broadening the total profile function is given by a Gaussian with a width of

∆ν =
ν0
c

√
2kT

m
+ ξ2. (8.14)

The convolution of a Gaussian and a Lorentzian is called a Voigt function.
There is no closed analytical form for this function. The corresponding profile
function is

φ(ν − ν0) =
H(a, v)√
π∆νD

, (8.15)

where

H(a, v) =
a

π

∫ ∞

−∞

e−y2

(v − y)2 + a2
dy

v =
ν − ν0
∆νD

a =
γ

4π∆νD
(8.16)

If a� 1 then the function looks like a Gaussian close to the central frequency,
and like a Lorentzian in the line wings. The Voigt function is very important
in modelling spectral lines in stellar atmospheres as it describes the combined
action of natural broadening, collisional broadening, thermal broadening and
possibly turbulence.
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Figure 14: Example intensities of the Hα line as received from an optically thin
source. Blue: the unrealistic case of natural broadening only. Because the profile
is narrow its maximum value is 7× 10−9. Green: natural broadening and thermal
broadening corresponding to a temperature of 10,000 K. Red: As the green curve
but now also including 10 km s−1 microturbulence. Cyan: resulting line profile of
two clouds with individual line profiles as the red curve, one cloud moving at a
line-of-sight velocity of +5 and one of -10 km s−1. Purple: as the cyan curve, but
now taking into account finite spectrograph resolution and photon noise where the
maximum intensity has an expectation value of 100 photons.
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8.3 Line widths as a diagnostic
Line broadening typically depends on multiple quantities. Using the line
width of a single line as a diagnostic of the source is therefore often difficult
or even impossible. Not all lines are equally sensitive to the parameters
that set the line broadening, so one can exploit observations of multiple
lines from the same source to disentangle the various contributions to the
line broadening. A very useful example is to use observations of two spectral
lines from two atoms with different mass to disentangle thermal and turbulent
broadening. The thermal broadening depends on the mass of the atom, while
the turbulent broadening only depends on the bulk velocities, and so is the
same for all atomic species.

Assume we observe two spectral lines from a source that is optically thin
at all relevant wavelengths, so that the shape of the spectral lines is pro-
portional to the line profile function: Iν ∼ φν . Assume that the dominant
two sources of broadening are thermal broadening and turbulent broadening.
The thermal width in velocity units is

√
2kT/mi with i = 1, 2 denoting the

atomic species, while the turbulent width in velocity units is just ξ. Denote
the observed width of spectral line 1 caused by atom 1 as ∆w1, and likewise
for line two. Then

∆w2
1 =

2kT

m1

+ ξ2, (8.17)

∆w2
2 =

2kT

m2

+ ξ2, (8.18)

Let m2 = xm1, so that

∆w2
1 −∆w2

2 =
2kT

m1

(
1− 1

x

)
(8.19)

T =
(
∆w2

1 −∆w2
2

) m1

2k

x

x− 1
. (8.20)

The turbulent velocity ξ can then be directly computed from Eqs. 8.17
or 8.18.

9 Bound-free transitions
If a collision or photon causes a transition from a bound to an unbound state,
we call this a bound-free transition. The canonical example is ionisation of
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an atom, where part of the absorbed energy is used to release an electron
from the potential well of the rest of the atom, and the leftover energy is put
into kinetic energy. As for bound-bound transitions, there are five processes:

• radiative ionization

• spontaneous radiative recombination

• induced radiative recombination

• collisional ionization

• collisional recombination

It is possible to go through the same process as for bound-bound tran-
sitions and derive the expressions for extinction, emissivity and the rate
coefficients, as well as the Einstein-Milne relations, which are the bound-free
equivalent of the Einstein relations. We will however just give the results
here and argue heuristically why the expressions are plausible.

Collisional ionisation and recombination We start with collisional pro-
cesses. Collisional ionisation requires a colliding particle (often an electron)
of sufficient energy. The formalism is entirely analogous to bound-bound
collisions, so if the velocity distribution is Maxwellian, it has an ionisation
rate per particle in state i to the ground state of the next ion c per second of

Cic = nefioniz(T ), (9.1)

where fioniz(T ) depends on the atom and transition under consideration.
Collisional recombination is a three-body process, it requires an ion, an

electron that gets captured and a third particle (often an electron) to carry
away the excess energy and fulfil momentum conservation. The rate per
particle per second is

Cci = n2
efrecom(T ). (9.2)

Because it requires three particles to be close to each other at the same
time this process is often not very important. The rate coefficients are re-
lated because they must yield the Saha distribution for particles in thermal
equilibrium:

nc

ni

∣∣∣∣
LTE

=
Cic

Cci

(9.3)
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Radiative ionisation Radiative ionisation is also called photoionisation.
If a particle is hit by a photon of sufficient energy it can be ionised. The
cross section for this process per particle in a given state at a given frequency
is σic(ν). The rate per second per particle in state i is thus

Ric =

∫ ∞

ν0

4π

hν
σic(ν)Jν dν, (9.4)

where ν0 is the frequency corresponding to the energy difference between
state i and the continuum. The ionisation cross section is often largest close
to ν0 and gets smaller for higher frequencies.

Radiative recombination Spontaneous radiative recombination requires
the presence of an ion and an electron. The rate per particle per second is
given by

Rspont
ci = ne

∫ ∞

0

v f(v)σspont
ci (v) dv, (9.5)

where f(v) is the velocity distribution of the electrons. If the Maxwell distri-
bution holds then the integral can in principle be performed to yield a simple
relation for the rate per particle:

Rspont
ci = Ne αi(T ). (9.6)

Here αi(T ) is a recombination coefficient with units [m3 s−1], and depends
on the temperature of the gas.

Without proof we give the total radiative recombination rate per particle
in state c per second, combining both spontaneous and induced recombina-
tion, and expressed using only the cross section of radiative ionisation:

Rci = 4π

[
ni

nc

]
LTE

∫ ∞

ν0

σic(ν)

hν

(
2hν3

c2
+ Jν

)
e−hν/kT dν. (9.7)

The term [ni/nc]LTE can be computed from the Saha relation and appears be-
cause of the Einstein-Milne relations, the equivalent of the Einstein relations
but for bound-free transitions. The 2hν3/c2 term is for spontaneous recom-
bination, while the Jν term represents induced recombination. Note that Rci

still depends on the electron density, but the explicit dependency is hidden
in [ni/nc]LTE. The bound-free extinction coefficient and source function are
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26 CHAPTER 2. BASIC RADIATIVE TRANSFER

Figure 2.6: H I bound-free extinction coefficient σbf
ν per hydrogen atom in level n (here written as αn)

against wavelength. The Lyman, Balmer, Paschen, Brackett and Pfund edges are marked by the quantum
number n of the ionizing level. Their amplitudes increase with n and have not been added up in this
figure. The threshold wavelengths are specified in Table 8.1 on page 176. Figure 8.14 on page 191 shows
the hydrogen and helium bound-free and free-free extinction for the actual mix of particles in three stellar
atmospheres. The total extinction from all continuous processes is shown for a grid of stellar atmospheres
in the Vitense diagrams on page 179 and page 192 ff. From Gray (1992).

σbf
ν ∼ 1/n5, because the Rydberg sequence for the hydrogen ionization thresholds has

hνn = χcn = E∞ − En = 13.6/n2 eV so that the factor ν−3 converts into a factor n6.
The bound-free extinction peaks are much lower than the bound-bound resonance-line

peaks. For example, the Lyα line at λ = 121.5 nm or ν = 2.47 × 1015 Hz has oscillator
strength f12 = 0.416 (page 280 of Rybicki and Lightman 1979). Assuming a = 0 in (2.54)
and T = 104 K in (2.49) gives with (2.65) and (2.66) a Lyα peak extinction σLyα(ν=ν0) =
4.0× 10−14 cm2, three orders of magnitude larger than the peaks in Figure 2.6. However,
the edges are much wider. The edge-integrated bound-free extinction is ν0/2 times larger
than (2.74), so that the full Lyman edge with threshold frequency ν0 = 3.3 × 1015 Hz
has integrated cross-section σLy edge = 0.01 cm2 Hz, about the same as the integrated
Lyα cross-section σLy α = 0.011 cm2 Hz given by (2.66). Note that the actual integrated
radiative transiton rates in the two features depend on the radiation field, as specified by
(3.4) on page 45 and (3.7) on page 46, respectively.

Free-free transitions. Free-free transitions13 have Sν = Bν when the Maxwell velocity
distribution holds (“thermal Bremsstrahlung”). A formula for the corresponding extinc-
tion coefficient per particle is (Rybicki and Lightman 1979 p. 162):

σff
ν = 3.7 × 108 Ne

Z2

T 1/2ν3
gff , (2.76)

with Z the ion charge, Ne and Nion the electron and ion densities, and gff a Gaunt factor
of order unity. There is no threshold frequency. This expression is derived classically;

13Note the astronomical convention: H I free-free extinction describes photon-absorbing encounters be-
tween protons and free electrons with Z = 1 and Nion = Np; H II free-free encounters do not exist; H

−

free-free encounters are between neutral hydrogen atoms and free electrons.

Figure 15: Bound-free extinction due to bound-free transitions from different
bound levels of hydrogen. Reproduced from Gray (2005).

αbf
ν = niσic(ν)(1−

bc
bi
e−hν/kT ),

Sbf
ν =

2hν3

c2
1

bi
bc
ehν/kT − 1

. (9.8)

The bi and bc symbols are called departure coefficients, and are defined as
the ratio of the actual level population to the LTE level population:

bi =
ni

nLTE
i

(9.9)

10 Other radiative processes
In most circumstances we are interested in the bound-bound and bound-
free transitions. There exist however many more processes that can lead to
photon absorption and emission. We briefly treat a few of the more common
ones.

Free-free transitions A free-free transition is the emission or absorption
of a photon by an electron that moves in the electric field of a charged particle.
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Harvard-Smithsonian Center for Astrophysics

Chandra X-ray 60 Garden St. Cambridge, MA 02138 USA
Observatory Center http://chandra.harvard.edu 

IDCS J1426.5+3508: A massive galaxy cluster located about 10 billion light years from Earth.
. 
(Credit: NASA/CXC/SAO)

Caption: Astronomers have made the most detailed study yet of an extremely massive young galaxy 
cluster using three of NASA’s Great Observatories. This multi-wavelength image shows this galaxy cluster,
 IDCS 1426.5+3508, in X-rays from Chandra (blue), visible light from Hubble (green), and infrared light from 
Spitzer (red). This rare galaxy cluster weighs almost 500 trillion Suns and it was observed when the Universe
 was less than a third of its current age. It is the most massive galaxy cluster detected at such an early epoch,
and, thus, has important implications for understanding how these mega-structures formed and evolved in the
young Universe.

Chandra X-ray Observatory ACIS Image 

CXC operated for NASA by the Smithsonian Astrophysical Observatory 

Figure 16: IDCS J1426.5+3508: A massive galaxy cluster located about 1010

light years from Earth. The stars in the galaxies are visible in the the optical
Hubble and infrared Spitzer images (yellow and red). The diffuse blue glow is
X-ray emission observed with Chandra. From fits to the spectrum of the X-ray
radiation the temperature of the gas is estimated to be ∼ 7× 107 K Image taken
from http://chandra.harvard.edu, scientific results using the data are presented
in Brodwin et al. (2016).
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If the particle velocities follow the Maxwell distribution then the emissivity
is given by

jffν =
8e6

3mc3

(
2π

3kme

)1/2

nenion
Z2

√
T
e−hν/kT ḡff , (10.1)

with Z the charge of the particle in elementary charges and ḡff a so-called
velocity averaged Gaunt factor which depends on frequency and temperature.
The source function is the Planck function, and we can thus compute the
corresponding extinction coefficient from αν = jν/Bν :

αff
ν =

4e6

3mhc

(
2π

3kme

)1/2

nenion
Z2

√
Tν3

(1− e−hν/kT )ḡff , (10.2)

with Z the ion charge and gff a quantum mechanical correction factor. The
source function is the Planck function as long as the Maxwell distribution
holds. Emission from this process is also called ‘thermal bremsstrahlung’.
For optically thin emission the spectrum is proportional to jffν . The location
of the cutoff caused by the e−hν/kT term is a temperature diagnostic of the
emitting gas.

10.1 Elastic scattering
Elastic scattering processes are processes where a photon is scattered, mean-
ing that it changes its direction, but does not change its frequency.

Thomson scattering Scattering of photons by free electrons is called
Thomson scattering. Its extinction coefficient is independent of frequency
and is given by

αν = σTne = 6.65× 10−29 m−2 ne. (10.3)

Its source function is, assuming isotropic scattering: ST
ν = Jν , which is

frequency-dependent.
This expression is valid for low-energy photons and electrons. At relativis-

tic speeds the correct description is Compton scattering. Thomson scattering
is the dominant source of continuum opacity in hot stars, where hydrogen is
almost completely ionised. It also causes the solar corona to scatter the light
from the solar photosphere and gives rise to the so-called white-light corona.
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Rayleigh scattering Photons can also scatter on electrons bound in an
atom or molecule. If ν � ν0 then the cross section per particle is given by

σR
ν = fluσ

T
( ν

ν0

)4

, (10.4)

with flu and ν0 the oscillator strength and frequency of the transition. Again
Sν = Jν . Rayleigh scattering is often unimportant in stars, but it causes the
blue color of the sky on Earth.

10.2 The H− ion
If one adds the various sources of bound-free and free-free extinction coeffi-
cients together for the atmosphere of cool stars like the Sun, then one finds
that it is much lower than what is expected. It turns out that a rather unusual
particle is responsible for most of the continuum opacity here, the negative
ion of hydrogen H−, which is a neutral hydrogen atom with an extra electron.
It has only one bound state, with a binding energy of E∞ − E1 = 0.75 eV,
corresponding to a wavelength of λ = 1650 nm. There is only one bound
state, so H− has no spectral lines.

The bound-free transition coefficient is the dominant source of continuum
opacity between the Balmer edge at 365 nm and 1600 nm. At longer wave-
lengths H− free-free radiation is the dominant continuum process. Note that
H− free-free means a neutral hydrogen interacting with a free electron.

Hydrogen is almost completely neutral in the photosphere of cool stars,
so where do the electrons come from that are needed to make H−? It turns
out that other elements such as Na, Mg, Si, and Fe have a low first ionisation
potential and are still singly ionised in the photosphere of such cool stars.
Even though their abundance is low (roughly one particle per one million
hydrogen atoms) they still provide the sufficient electrons to make H− the
dominant source of opacity.

11 Rate equations

11.1 General theory
In the previous sections we have found expressions for rate coefficients: ex-
pressions that give the probability per particle in state i per second to tran-
sition to state j. If the rates between the states of a particle are known we
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can set up an equation system that determines the population of the states.
For each state we have:

dni

dt
= rates into level i− rates out of level i (11.1)

We furthermore assume that the system is in equilibrium, so that the
time derivative is zero. The rates in and out of the level balance in that case.
Denote the rate coefficient from i to j as Pij (with units s−1) and we consider
a particle with N states in total. Then the rate equation for level i is∑

j,j 6=i

njPji − ni

∑
j,j 6=i

Pij = 0. (11.2)

This equation can be written in an elegant matrix form. Define

Pii = −
∑
j,j 6=i

Pij, (11.3)

which means the total rate coefficient out of level i. Then the rate equations
are

P T~n = 0, (11.4)

where P is a matrix whose elements are Pij and ~n is a vector whose compo-
nents ni are the populations of each level i. There are only N−1 independent
equations, so we should replace one equation with particle conservation:∑

i=1,N

ni = ntot. (11.5)

In the matrix form of the equations this means we set Pij = 1 in one row of
the rate matrix, and replace the zero with ntot in the corresponding element
on right hand side.

11.2 The two-level atom
In order to make this less abstract we look at a two-level atom with a bound-
bound transition between the levels and E2 > E1.

The rate equation for level 1 is :

n2P21 − n1P12 = 0. (11.6)
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The rate equation for level 2 is :

n1P12 − n2P21 = 0. (11.7)

According to Eq. (11.3) and (11.4), the matrix form of this system would be:[
P11 P21

P12 P22

] [
n1

n2

]
=

[
0
0

]
(11.8)

where in this particular case P11 = −P12 and P22 = −P21, which yields:[
−P12 P21

P12 −P21

] [
n1

n2

]
=

[
0
0

]
(11.9)

We need to replace one of the equations with particle conservation, because
both rows provide identical information:

n1 + n2 = ntot. (11.10)

We can thus write the rate equations in matrix form as[
−P12 P21

1 1

] [
n1

n2

]
=

[
0
ntot

]
(11.11)

This system has the solution[
n1

n2

]
=

[
(ntotP21)/(P12 + P21)
(ntotP12)/(P12 + P21)

]
. (11.12)

A more illuminating form is :

n2

n1

=
P12

P21

. (11.13)

We can now fill in explicit expressions for the rate coefficients using the
five bound-bound processes:

n2

n1

=
B12Jν0 + C12

A21 +B21Jν0 + C21

. (11.14)

In the limit where collisions dominate the rate coefficients we get n2/n1 =
C12/C21, which, using the Einstein relations for collisions just reduces to the
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Boltzmann population ratio. In the low density limit we ignore collisions to
get

n2

n1

=
B12Jν0

A21 +B21Jν0

.

=
Jν0

A21/B12 + (B21/B12)Jν0

=
g2
g1

Jν0

2hν3/c2 + Jν0

. (11.15)

In the last expression we filled in the Einstein relations, and g1 and G2 are
the statistical weights of the levels. A further slight rearrangement gives

g1n2

g2n1

=
Jν0

2hν3/c2 + Jν0

< 1. (11.16)

From the discussion about bound-bound transitions you remember that in
order to get a negative extinction coefficient and thus laser action you need
(g1n2)/(g2n1) > 1.

This thus proves that it is impossible to create a laser, or have an astro-
physical laser mechanism with a two-level system only: neither collisions nor
a radiation field can set up the required population inversion.

11.3 A three-level atom as a density diagnostic
In many astrophysical circumstances the radiation field Jν0 is so weak that
the terms involving the radiation field can be ignored in the rate equation.
Let’s take a look at a three level atom, with ground state 1 and two excited
levels 2 and 3. We assume both excited levels are only connected to the
ground state, there are no transitions between the excited levels. For level 2
we assume that A21 is of the same order as C21, but for level 3 we assume
that A31 � C31. Such a situation can arise if the transition from 2 to 1 is
forbidden and the transition from 3 to 1 is allowed. The rate equation for
level 2 is now:

n2(C21 + A21) = n1C12

n2 = n1
C12

C21 + A21

. (11.17)
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And for level 3 it is simply:

n3 = n1
C13

A31

. (11.18)

We can now express the frequency-integrated emissivity of transition
2 → 1 as

j21 =
hν21
4π

A21n2 =
hν21
4π

n1A21
C12

C21 + A21

. (11.19)

We do the same for the other transition and compute the ratio of the emis-
sivities:

j31
j21

=
ν31
ν21

A31

A21

C21 + A21

C12

C13

A31

=
ν31
ν21

C13

C12

(
1 +

C21

A21

)
(11.20)

Remember that the collisional rate coefficient depends on the electron density
as Cij = nefij(T ), where fij(T ) is a temperature-dependent function. We
insert this expression into the equation for the emissivity ratio to make the
electron dependence explicit:

j31
j21

=
ν31
ν21

f13(T )

f12(T )

(
1 + ne

f21(T )

A21

)
. (11.21)

At low electron densities (nef21(T ) � A21) the ratio is not sensitive to the
electron density. At very high electron densities the assumption that A31 �
C31 = nef31(T ) breaks down, and we need to modify our model. But for
intermediate electron densities where ne ≈ A21/f21(T ) our model works well.
If we furthermore assume that the spectral lines form under optically thin
conditions, then the observed flux ratio is equal to the emissivity ratio and
we can directly apply Equation 11.21 to estimate the electron density in the
observed object.

In reality three-level atoms do not exist. Real atomic systems are much
more complicated. But also in real atoms the basic concept described here
can be used to estimate densities. The rate equations to solve become how-
ever more complicated and are typically solved numerically.
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Figure 17: Schematic term diagram of the three-level atom as a temperature
diagnostic. Horizontal lines indicate the energy of the states with n = 1, 2, and 3,
vertical solid lines indicate collisional excitation, vertical dashed lines spontaneous
radiative deexcitation.
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11.4 A three-level atom as a temperature diagnostic
A three-level atom (or a suitable set of three levels in a more complicated
atom) can also be used as a temperature diagnostic. We consider the situa-
tion depicted in Figure 17: the two excited levels 2 and 3 are only populated
by collisional excitation from the ground state, and depopulated only by
spontaneous deexcitation. This means we only consider low-density plasmas
where Cji � Aji, with j the upper and i the lower level of the transition.

Again, we consider the rate equations for the excited levels. Level 3 is
populated by collisions from the ground state and depopulated by radiative
deexcitation to levels 1 and 2, so that:

C13n1 = (A32 + A31)n3. (11.22)

Level 2 is populated by collisions from level 1 and radiative deexcitation from
level 3, yielding:

C12n1 + n3A32 = A21n2. (11.23)

The ratio of the frequency-integrated emissivities of the 3 → 2 and 2 → 1
transitions is then

j21
j31

=
ν21
ν31

A21n2

A32n3

. (11.24)

We then eliminate A21n2 using Eq. 11.23 and the ratio n1/n3 using Eq. 11.22
to arrive at

j21
j31

=
ν21
ν31

(
1 +

C12

C13

A31 + A32

A32

)
. (11.25)

Collisional excitation coefficients can be written as

Cij = neΩij(T )
√
T e(Ei−Ej)/kT , (11.26)

where Ω is a slowly varying function of temperature. The dependence with
ne drops out of equation (11.25) because it is present in both collisional rate
terms.
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12 Exercises
1. Eddington-Barbier relation

The emergent intensity from a plane-parallel atmosphere is

I+ν (τν = 0, µ) =

∫ ∞

0

Sν(tν) e
−tν/µ

dtν
µ
.

Show that the Eddington-Barbier approximation I+ν (τν = 0, µ) ≈ Sν(τnu =
µ) is exact for a linear source function (Sν = kτnu+m).

2. Atom populations
A two-level atom consists of a ground state (g1 = 5) and an excited state
(g2 = 2) that is connected with the ground state with a transition of
500 nm wavelength. A region populated by such atoms has an electron
temperature Te = 10000 K and is optically thin at all wavelengths.
The region is illuminated by a star that is 105 AU distant, has radius
R∗ = 0.02 R� and can be approximated with a blackbody of T = 105

K in the visual region (this is representative for the central star of a
planetary nebula).

a Calculate the fraction of all atoms that are in the excited state
under the LTE assumption.

b Compute the population ratio n2/n1 ≈ n2/ntot assuming a photon-
dominated region (no collisions). Include stimulated emission.

3. LTE atom populations and abundances
Consider a stellar atmosphere, where the H abundance fraction is aH =
0.91. The Hα line is a transition from upper level nu = 3 (Eu =
1.938×10−18 J, gu = 4) to lower level nl = 2 (El = 1.635×10−18 J, gl =
2) in the neutral hydrogen atom. The ionization energy for H is
Eion = 2.18 × 10−18 J. We have a total atom density (all species, not
including electrons) of na = 1.20 × 1021 m−3 and an electron density
ne = 1.71 × 1019 m−3 . Assume that the partition functions for neu-
tral and ionized H are UHI

= 2 and UHII
= 1 respectively at that

temperature. Calculate, assuming a temperature T = 7000 K and TE:
• The density of neutral hydrogen relative to the total atom density.
• The density fraction of atoms of neutral hydrogen with electrons

in the lower level and in the upper level.
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• What is the contribution of hydrogen to the electron pool? How
does it compare to the electron density provided in the title? Re-
member that hydrogen can only contribute with one electron when
it gets ionized. To first order, would you think that we can as-
sume that H is the main electron donor in the atmosphere at this
temperature?

4. Line strength and atom populations
In the spectrum of the Sun the Ca II K line is much stronger than the
H line, even though the abundance of Ca is much lower than that of
hydrogen.

NCa

NH

≈ 1.7× 10−6. (12.1)

Explain why this is the case assuming Local Thermodynamic Equilib-
rium (LTE, which means Saha and Boltzmann hold, Tsun = 5500 K,
Ne = 1021 m−3). Remember that under the LTE assumption, the line
opacity is given by the expression:

αLTE
ν = C · nLTE

l fluϕ(ν − ν0)[1− e−hν0/KT ]. (12.2)

where C is a constant, nLTE
l is the population density of the lower

level and flu is the oscillator strength. Therefore, in order to solve the
problem you need to know the population of the lower level of each
transition (NCa II,n=1 and NH I,n=2). Here are some atomic data and
constant that you might need:
χH I = 13.6 eV, EH I,n=2 = 10.6 eV, UH I = 2, UH II = 1, gH I,n=2 = 8.
χCa I = 6.11 eV, ECa II,n=1 = 0 eV, UCa I = 1, UCa II = 2, gCa II,n=1 = 2.
1 eV = 1.6021 10−19 J, k = 1.38064 10−23 J/K, h = 6.6260 10−34 J/s,
me = 9.1093 10−31 kg, c = 2.99792458 108 m/s.

5. Line broadening
Consider the equations for the Gaussian and Lorentzian functions.
They are commonly used in line synthesis to describe line broadening.

• Derive expressions for the full width at half maximum (FWHM)
of both profiles.

• Give examples (at least two for each) of physical processes that
can produce the two kinds of line profiles.

• If a spectral line is affected by processes causing both Gaussian
and Lorentzian profiles, how is the resulting profile calculated?
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6. Molecules
Figure 18 shows a spectrum of the star ς Per. Superimposed on the

Figure 18: Left: stellar spectrum from ς Per, where narrow molecular lines from
the interstellar medium are observed superimposed to the stellar lines. Right:
Term diagram for the CN molecule, where the observed transitions are indicated.
Source: Meyer & Jura (1985).

stellar spectrum, narrow absorption feature due to the CN molecule
in the interstella medium can be observed. The term diagram to the
right shows the transitions in question. They arise from an electronic
transition between the v = 0 states of the electronic ground state (X2Σ)
and the excited electronic state B2Σ. The rotational states involved
are indicated in the term diagram, These lines can be used to derive
the temperature of the cosmic microwave background (CMB).

a Measure on the paper the equivalent widths of the R(1) and R(0)
lines.

b Derive the temperature of the cosmic background radiation using
the equivalent widths just measured. Assume that the ISM in
optically thin at all relevant wavelength and that only radiative
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transitions occur. The lowest rotational levels of the X2Σ state
will then be in thermal equilibrium with the CMB temperature.
The problem then reduces to finding the excitation temperature
for the J = 0 and J = 1 levels of the X2Σ. In the paper of Meyer
& Jura (1985) from which the data are taken, we find some useful
relations. The column density for the lower level of an unsaturated
absorption line: Nl = 1.13 · 1012 Wλ

λ2
0flu

(with Wλ and λ0 in cm).
The statistical weight of a rotational level gJ = 2J + 1. The
oscillator strengths for these transitions consist of an electronic
and a rotational component. The total oscillator strengths may
be written: fR(0) = 1 · 0.0342 and fR(1) =

2
3
· 0.0342.

Remark: A similar result was found already in 1940, even if the tremen-
dous significance of a non-zero temperature in space was not understood
then. This exercise was extracted from an old exam by D. Kiselman.

7. Four panel diagrams

Figure 19 shows the source function as a function of height for a
plane parallel stellar atmosphere. Additionally you get the total absorp-
tion coefficient and the optical depth for two frequencies (continuum
and line center). Draw a graph of the vertically emergent line profile
(µ = 1) as function of frequency. Use some more points along the pro-
file, and qualitatively assume that the dependence of the optical depth
must fall between the two that are already given.
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Figure 19: Four panel diagram. Upper-left: Absorption coefficient. Upper-right:
Optical-depth in the continuum (grey) and at line center (black) as a function of
geometrical height. Bottom-right: Source function as a function of geometrical
height. The dashed line in the upper-right panel indicates where τν = 1.
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