Exercise 3:

LTE vs NLTE electron densities: the effect of collisions with electrons

Jaime de la Cruz Rodríguez

Institute for Solar Physics - Stockholm University

NLTE electron densities

Most MHD codes and inversion codes assume a LTE EOS $\longrightarrow n_e^{\text{LTE}}$

Electrons are the main source of collisions in the chromosphere: collisional rates can be wrong with LTE electron densities.

If $n_e^{\text{NLTE}} < n_e^{\text{LTE}}$, you will get less coupling to local conditions because

NLTE electron densities

We will run the FALC model (which includes NLTE electron densities):

- With LTE n_e
- With NLTE n_e (the ones included in the model)
- With NLTE n_e (computed by us with STiC, starting from the LTE solution)

Instructions:

- 1. LTE electrons in input.cfg set:
 - keep_nne = 0 (this will recompute n_e^{LTE})
 - make sure that the hydrogen atom is PASSIVE in atoms.input
 - set the output profiles to output_profiles = synthetic_neLTE.nc
 - run STiC: mpiexec -n 2 ./STiC.x
- 2. NLTE electrons (included in FALC) in input.cfg set:
 - keep_nne = 1 (this will preserve the input n_e)
 - make sure that the hydrogen atom is PASSIVE in atoms.input
 - set the output profiles to output_profiles = synthetic_neLTE.nc
 - run STiC
- 3. NLTE electrons (computed internally in STiC assuming NLTE hydrogen and charge conservation):
 - keep_nne = 0 (this will recompute n_e^{LTE})
 - make sure that the hydrogen atom is ACTIVE in atoms.input
 - in keyword.input set SOLVE_NE = ITERATION
 - set the output profiles to output_profiles = synthetic_neLTE_STIC.nc
 - run STiC

NLTE electron densities

Summary

Electrons are the main source of collisions in the chromosphere.

Hydrogen is the main electron donor and its ionization balance is in NLTE.

The effect of assuming LTE n_e is that we can change the core intensity of chromospheric lines.