STiC - The Stockholm inversion COde: why/where/when

erc

Jaime de la Cruz Rodríguez

 The Institute for Solar Physics - Stockholm UniversityEuropean Research Council
Eccactiva ar misturotor Lommiakn

What is an inversion?

The atmosphere leaves an imprint in the line profiles
SST/CHROMIS Ca II K (wing)

What is an inversion?

The atmosphere leaves an imprint in the line profiles
SST/CHROMIS Ca II K (wing)

What is an inversion?

The atmosphere leaves an imprint in the line profiles
SST/CHROMIS Ca II K (wing)

What is an inversion?

The atmosphere leaves an imprint in the line profiles
SST/CHROMIS Ca II K (wing)

What is an inversion?

The atmosphere leaves an imprint in the line profiles
SST/CHROMIS Ca II K (wing)

It is a non-linear least squares fit

What is an inversion?

It is a non-linear least squares fit

What is an inversion?

$$
[0] \chi^{2}=276.064631
$$

NLTE is a very vague term!

Let's assume a bound-bound transition in a 2 level atom

The rate equation for this atom is:

Note the dependence with J (the mean intensity) -> non-locality

When should/can I use STiC

With observations of non-LTE lines*

Zeeman induced polarization

Hydrostatic equilibrium

Line	PRD/SE	Polarization	Max formation	
Na I D1	SE	Zeeman	Upper photosphere	
Mg I 517 nm	SE	Zeeman	Upper photosphere	
Ca \|	IR triplet	SE	Zeeman + Scatt.	Lower chromosphere
H I 656 nm		SE	Zeeman + Scatt.	
He I D3	Siddle chromosphere			
He I 1083 nm	SE	Zeeman + Scatt.	Mid/up chromosphere	
Ca II H \& K	SE	Zeeman + Scatt.	Mid/up chromosphere	
Mg II h \& k	PRD	Zeeman + Scatt.	Upper chromosphere	

What is STiC?

It is a nLTE code based on the excellent RH code

It allows reconstructing the stratification of a model atmosphere

Allows including lines from different species including PRD

Regularization of the model parameters

Inversions in column mass or optical depth using nodes

Simulation by Martinez-Sykora et al. (2017)

The concept of nodes (degrees of freedom)

We need a fine grid of depth points to solve the transfer equation

We cannot operate over all those individual grid points: not well constrained

The concept of nodes (degrees of freedom)

We need a fine grid of depth points to solve the transfer equation

We cannot operate over all those individual grid points: not well constrained

The concept of nodes (degrees of freedom)

We need a fine grid of depth points to solve the transfer equation

We cannot operate over all those individual grid points: not well constrained

Free parameters in STiC

Works in CGS units [not SI!]

You can place nodes individually in:

- Temperature [K]
- $V_{\text {los }}\left[\mathrm{cm} \mathrm{s}^{-1}\right]$
- $V_{\text {turb }}\left[\mathrm{cm} \mathrm{s}^{-1}\right.$]
- $\mathrm{B}_{\text {long }}$ [G]
- |B $\mathrm{B}_{\text {trans }} \mid$ [G]
- B_{X} [rad]

The number of nodes in each parameter can be different!

STiC: The value of the node is the value of the variable

SIR, NICOLE: The value of the node is the value of a correction to the variable

We can write the merit function with an extra regularization term:

$$
\chi^{2}(\boldsymbol{p}, \boldsymbol{x})=\frac{1}{N_{d a t}} \sum_{i=1}^{N_{d a t}}\left[\frac{o_{i}-s_{i}\left(\boldsymbol{p}, x_{i}\right)}{\sigma_{i}}\right]^{2}+\sum_{j=1}^{N_{p a r}} \alpha_{j} r_{j}(\boldsymbol{p})^{2}
$$

Then we linearize these equation so Δp are corrections to our parameters that minimise the merit function:

$$
\chi^{2}(\boldsymbol{p}+\boldsymbol{\Delta} \boldsymbol{p}, \boldsymbol{x})=\frac{1}{N_{d a t}} \sum_{i=1}^{N_{d a t}}\left[\frac{o_{i}-s_{i}\left(\boldsymbol{p}, x_{i}\right)-\boldsymbol{j}_{i}^{T} \boldsymbol{\Delta} \boldsymbol{p}}{\sigma_{i}}\right]^{2}+\sum_{j=1}^{N_{p a r}}\left[\alpha_{j} r_{j}(\boldsymbol{p})+\boldsymbol{h}^{T} \boldsymbol{\Delta} \boldsymbol{p}\right]^{2} .
$$

If we take the derivative respect to Δp and do some algebra, we derive the Levenberg-Marquardt algorithm, but this time including regularization terms:

Regularization functions:

- Tikhonov first derivative: penalises gradients in the solution $\left(p_{k}-p_{k-1}\right)$
- Tikhonov low norm: penalises deviation from an expected value ($p_{k}-v$)
- Second derivative: penalises changes in the gradient $\left(p_{k+1}-2 p_{k}+p_{k-1}\right) /(2 d x)$

Diagnostics

Choose your instrument wisely

E.g., FPI vs slit-spectrograph

CRD line

Ca II 8542

Ca II 8542

Ca II 8542

Ca II K

SST/CHROMIS - 400 nm continuum

Ca II K

SST/CHROMIS - Ca II K + 313 mA

Call K

SST/CHROMIS - Ca II K (core)

Ca II K

PRD line

SST/CHROMIS Ca II K (wing)

PRD lines

Mg II h\&k

PRD lines

Gosic et al. (2018)

One science example with STiC

Multi-line non-LTE inversions

Coverage up to the upper chromosphere

Ca II K
Ca II H

Multi-line non-LTE inversions

Velocity

Microturbulence

$\log \tau_{500}=-1.5$

de la Cruz Rodriguez et al. (in prep.)

Multi-line non-LTE inversions

Temperature

A word of caution

Inversion code always produce a result, which can be easily over-interpreted

Ask yourself the following questions BEFORE you start running the code:

- What scientific question am I trying to solve? (find it!)
- Do I need inversions to solve it? (if not, don't use inversions!)
- What aspect of the inversion output can I use to solve my question? Try to anticipate what part of the output can help you to solve that question.

Exercises

http://dubshen.astro.su.se/~jaime/2018 HAO school/exercises stic.pdf
You will need python to visualise the input/output data:
numpy, matplotlib, netCDF4, scipy, astropy

1. Synthesis of spectra with STiC (RH).
2. Inversion of the spectra from exercise 1.
3. Inversion of a non-LTE/CRD observation of Ca ll 8542.
4. Inversion of an observation with LTE/nLTE-CRD/nLTE-PRD lines.
5. Regularization (4b).
