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What is an inversion?
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2

4

6

8

10

12

I[
nW

m
�
2

H
z�

1
S

r�
1
]

The atmosphere leaves an imprint in the line profiles
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2

4

6

8

10

12

I[
nW

m
�
2

H
z�

1
S

r�
1
]

The atmosphere leaves an imprint in the line profiles



What is an inversion?

0 10 20 30 40 50 60

x [arcsec]

0

5

10

15

20

25

30

35

40

y
[a

rc
se

c]

SST/CHROMIS Ca II K (wing)

�1 0 1

�� �0 [Å]
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What is an inversion?
It is a non-linear least squares fit



What is an inversion?

Guessed model 
(P = P1, P2, …, Pn) Observables

Real 
observations

Compute

Similar? Solar conditions?
Yes!

Adjust parameters and repeat!

No

It is a non-linear least squares fit



What is an inversion?



LTE vs NLTE
NLTE is a very vague term!

Let’s assume a bound-bound transition in a 2 level atom

Radiative excitation Radiative de-excitation Stimulated de-excitation Collisional excitation and de-excitation

The rate equation for this atom is:

nu

nl
=

J̄Blu + Clu

Aul + J̄Bul + Cul
⇡ (LTE) ⇡ Clu

Cul
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Note the dependence with J (the mean intensity) -> non-locality



When should/can I use STiC
With observations of non-LTE lines*

Zeeman induced polarization

Hydrostatic equilibrium

Line PRD/SE Polarization Max. formation
Na I D1 SE Zeeman Upper photosphere
Mg I 517 nm SE Zeeman Upper photosphere
Ca II IR triplet SE Zeeman + Scatt. Lower chromosphere
H I 656 nm SE Zeeman + Scatt. Middle chromosphere
He I D3 SE Zeeman + Scatt. Mid/up chromosphere
He I 1083 nm SE Zeeman + Scatt. Mid/up chromosphere
Ca II H & K PRD Zeeman + Scatt. Upper chromosphere
Mg II h & k PRD Zeeman + Scatt. Upper chromosphere



What is STiC?
It is a nLTE code based on the excellent RH code

It allows reconstructing the stratification of a model 
atmosphere

Allows including lines from different species including 
PRD

Regularization of the model parameters

Inversions in column mass or optical depth using nodes
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The concept of nodes (degrees of freedom)
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Num. nodes = 4

We need a fine grid of depth points to solve the transfer equation

We cannot operate over all those individual grid points: not well constrained
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We need a fine grid of depth points to solve the transfer equation

We cannot operate over all those individual grid points: not well constrained



Free parameters in STiC
Works in CGS units [not SI!]

You can place nodes individually in:  
• Temperature [K] 
• Vlos [cm s-1] 
• Vturb [cm s-1] 
• Blong [G] 
• |Btrans| [G] 
• Bχ [rad]

The number of nodes in each parameter can be different!

STiC: The value of the node is the value of the variable

SIR, NICOLE: The value of the node is the value of a correction to the variable



Improving the inversion engine with regularization

We can write the merit function with an extra regularization term:

1. A regularizing Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm (LM hereafter) allows to perform non-linear least-squares fit of a model to data (Levenberg
1944). LM iteratively applies corrections to the parameters of a guessed model to minimize the di↵erence between out synthetic
and the measured data.

�2(p, x) =
1
N

NX

i=1

hoi � si(p, x)
�i

i2
+ ↵r(p)2, (1)

where p is a vector containing the Npar parameters of the model, S i is the i-th prediction of our model (computed at x abscissa
points), Oi is the i-th measured data point and �i is the error (or noise) of the i-th measurement, ↵ is a weight for the regularization
term and r(p) is a function that (in general) regularizes the family of solutions that our algorithm will prefer.

In our application let’s assume that we have defined an individual penalty function for each free parameter. That way the total
penalty term is given by the sum of all individual penalties r j(p):

�2(p, x) =
1

Ndat

NdatX

i=1

hoi � si(p, xi)
�i

i2
+

NparX

j=1

↵ jr j(p)2. (2)

Although it is relatively easy to find many proposals in the literature for the actual r j(p), we have not found a proper explanation
of the algorithm that allows including regularization in a LM, and therefore we have included the follwoing explanation of our
implementation. We further develop the forms of r j(p) in §2.

The idea behind the LM algorithm is that, in each iteration, we can find corrections (�p) to a set of model parameters (p) that
decrease our merit function �2, so that �2(p) > �2(p+ �p). Given that we need to iterate the solution of our set of parameters, we
can linearize the expression for �2(p+ �p), assuming that �p is su�ciently small in each iteration:

si(p+ �p) = si(p) + jT
i
�p, (3)

r j(p+ �p) = r j(p) + hT

j
�p, (4)

where ji is the Jacobian (vector of Npar elements) of the synthetic spectrum si(p, xi) and h j is the Jacobian (vector of Npar elements)
of a single r j(p). In principle, we can replace Eq. (3) and (4) into Eq. (5):

(5)�2(p+ �p, x) =
1

Ndat

NdatX

i=1

hoi � si(p, xi) � jT
i
�p

�i

i2
+

NparX

j=1

h
↵ jr j(p) + hT�p

i2
.

We can re-write Eq. (5) in matrix form, which simplifies enormously the algebraic manipulations and the notation. In that case,
we define J as the full Jacobian matrix for all data points with dimensions (Npar,Ndat) and H is a square matrix with dimensions
(Npar,Npar). Each row of H contains the derivatives of one individual penalty function relative to all parameters in p:

�2(p) =
h
o� s � J

T�p
i2
+
h
r +H�p

i2
=
h
o� s � J

T�p
iT

[o� s � J
T�p
i
+
h
r +H�p

iT h
r +H�p

i
. (6)

We have implicitly hidden the division by the noise in all relevant matrices, and we have included the ↵ factors in the vector r. If
we equal to zero the derivative of Eq. (6) respect to �p and after performing some basic matrix algebra, we can find the corrections
�p that minimize our merit function. Defining the modified approximate Hessian matrix:

A = J
T · J +H

T ·H, (7)

then the corrections to our current estimate of the parameter are given by the following linear system of equations, which include
the e↵ect of our regularizing functions r(p) and their derivatives:

A · �p = J · (o� s) �H
T · r. (8)

Eq. (8) is very similar to the linear system usually considered in a standard LM algorithm. We have simply modified the Hessian
matrix and added an extra term to the residue in the right-hand side to account for the regularization terms. This linear system of
equations can lead to unstable corrections in many situations. LM adds a diagonal damping term to the Hessian matrix (�·diag(A)·1)
that helps stabilizing the convergence of the problem:

(A + � · diag(A) · 1)�p = J · (o� s) �H
T · r. (9)

When � is large, the correction to our model will be closer to a Steepest-Descent algorithm and the step size will be smaller, whereas
when � is small the solution will be closer to a Conjugate-Gradient algorithm with a larger step size.

Most existing solar inversion codes (e.g., Ruiz Cobo & del Toro Iniesta 1992; Asensio Ramos et al. 2008; Borrero et al.
2011; Socas-Navarro et al. 2015) implement variations of the LM algorithm that is presented in Numerical Recipes (NR here-
after, Press et al. 1992). Although NR is a great introduction to numerical methods, that particular algorithm is far from optimal
because:
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matrix and added an extra term to the residue in the right-hand side to account for the regularization terms. This linear system of
equations can lead to unstable corrections in many situations. LM adds a diagonal damping term to the Hessian matrix (�·diag(A)·1)
that helps stabilizing the convergence of the problem:

(A + � · diag(A) · 1)�p = J · (o� s) �H
T · r. (9)

When � is large, the correction to our model will be closer to a Steepest-Descent algorithm and the step size will be smaller, whereas
when � is small the solution will be closer to a Conjugate-Gradient algorithm with a larger step size.

Most existing solar inversion codes (e.g., Ruiz Cobo & del Toro Iniesta 1992; Asensio Ramos et al. 2008; Borrero et al.
2011; Socas-Navarro et al. 2015) implement variations of the LM algorithm that is presented in Numerical Recipes (NR here-
after, Press et al. 1992). Although NR is a great introduction to numerical methods, that particular algorithm is far from optimal
because:
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All inversion codes regularise by using SVD on 
the A matrix to solve this linear system

de la Cruz Rodriguez, Leenaarts, Danilovic & Uitenbroek (to be submitted)

Regularization functions: 
• Tikhonov first derivative: penalises gradients in the solution (pk - pk-1)


• Tikhonov low norm: penalises deviation from an expected value (pk - v)


• Second derivative: penalises changes in the gradient (pk+1 - 2pk + pk-1) / (2 dx)




de la Cruz Rodríguez et al.: STiC
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Fig. 7. Inversion of a vertical slice from a 3D rMHD simulation. The panels illustrate from left to right the stratification in optical depth of temper-
ature, line-of-sight velocity and the vertical component of the magnetic field. Row (a): Original physical quantities from the MHD simulation. Row

(b): Inversion computed without regularization and a small number of nodes. Row (c): Inversion computed without regularization and a very large
number of nodes. Row (d): Inversion computed with understimated regularization and a very large number of nodes. Row (e): Inversion computed
with a very large number of nodes and properly scaled regularization. The exact number of nodes of each experiment is indicated in Table 2.

Fig. 8. Example fit of the di↵erent inversions (row (e), x = 7.9). We have only fitted Stokes Q, U and V in the �8542, �6301 and 6302 lines.
The fits for the Ca ii H, Fe i �6301 and Mg ii h lines are not displayed because they are virtually identical to those in their partnering lines. At the
considered noise level, all Q & U signal is below the noise level in all chromospheric lines.
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Convergence rate has improved, even with many nodes

We have removed spurious oscillations from the solution



Diagnostics 



Choose your instrument wisely
E.g., FPI vs slit-spectrograph

But how many nodes can we constrain with our observations?

The number of spectral lines and their sensitivity to the atmosphere.

Spectral resolution, spectral sampling and spectral coverage.



FTS atlas: spatial average in quiet-Sun

Photosphere Chromosphere

Reversed C-shape bisector from Ca II isotopic splitting 
(Leenaarts et al. 2014)

Ca II 8542
CRD line



Ca II 8542

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
I

�4

�3

�2

�1

0

1

2

Q
[x

10
00

]

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
�� �0 [Å]
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Ca II 8542
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SST/CRISP@8542 - far wings



Ca II 8542
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SST/CRISP@8542 - around line center



Ca II 8542
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SST/CRISP@8542 - “wing”
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Mg II h&k
PRD lines

included. The addition of more diagnostics, especially those
sensitive to different regimes and temperatures in the atmos-
phere, should help to further constrain the quality of the
reconstruction.

We have presented the first inversions of spatially resolved
IRIS spectra from typical quiet-Sun, plage, and sunspot profiles.
Our plage inversions require very high values of microturbu-
lence in the upper photosphere to reproduce the width of the

Figure 4. Top row: monochromatic images illustrating the location of our selected pixels for the inversion taken in the blue wing of the k line, in the core of the UV
line, and in the core the k line. Left column: observed spectra (black) and best-fit (red) for quiet-Sun, sunspot, and plage pixels, respectively, from top to bottom. The
inset depicts a zoom in the core of Mg IIk. The reconstructed temperature (black), vLOS (red), and vturb (blue) stratifications are shown in the right column.
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de la Cruz Rodriguez et al. (2016)



Mg II h&k
PRD lines
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Figure 14. Upper panel: Observed Mg II h & k spectra (red) and best-fit (blue) for a pixel inside the canceling region for which the IRIS Mg II h & k and UV
triplet lines are inverted. The inset depicts the observed Ni I 2814.350 Å line (red) used to better constrain velocities in the photosphere and best-fit (dashed blue
line). Bottom panels: The retrieved temperature (left) and vlos (right) are indicated with the red curves. Here we use the convention that positive values represent
downflowing plasma. As a reference, the black lines show the inverted quiet Sun temperature and vlos stratifications. Their respective uncertainties from multiple
inversions are shown with the gray and red shaded areas. Those uncertainties calculated from the response functions are plotted with the green shaded areas.

at height of log10⌧500 = -5.85. These results indicate the pres-
ence of plasma being pushed up to the chromosphere at an av-
erage speed of -4 km s-1. It is reasonable to assume that this
plasma, if it stays at the same temperature, should eventually
fall down to the surface and downflows would be detected.
However, we do not see this effect in our observations because
the slit is moving across the canceling region and therefore,
does not sample the same environment all the time. Still, we
see downflows in several pixels closer to the end of the can-
celing event, from �t = 23 min until �t = 27 min. Reconnec-
tion of magnetic field lines increases the temperature locally,
but seems to also cause higher microturbulent velocities in the
chromosphere (lower right panel in Figure 16). The similar-
ity of the microturbulence and temperature maps may also be,
to some extent, the result of an interplay between these two
atmospheric parameters since the wing widths of the Mg II
lines and the subordinate triplet lines are sensitive to both of
them (Carlsson et al. 2015, see also Figure 5 in de la Cruz
Rodríguez et al. 2016).

4.3. Energy budget of IN cancellations
Our observations suggest that the process of IN flux cancel-

lation provides a substantial amount of energy that is capable
of heating the chromosphere locally. In what follows we esti-
mate the energy content of IN canceling magnetic patches.

4.3.1. Magnetic energy

Based on our tracking results, i.e., considering the number
of detected canceling patches, their flux content, and the total

FOV, the flux cancellation rate is 27 Mx cm-2 day-1, which is
in agreement with the cancellation rate reported by Gošić et
al. (2016).

To derive the magnetic field strength (B) from the observed
Stokes profiles in the Mg 5173 Å we carried out inversions
using the SIR code (Ruiz Cobo & del Toro Iniesta 1992). This
code numerically solves the radiative transfer equation under
the assumption of local thermodynamic equilibrium (LTE)
and provides the temperature stratification, the velocity, the
magnetic field strength, inclination and azimuth angles along
the line of sight. Inverting a non-LTE line with a LTE code
means that the retrieved thermal parameters are not trustable,
but the derived magnetic field stratification can be considered
reliable (see Fig. 14 in de la Cruz Rodríguez et al. 2012).
We used three nodes in the temperature while the magnetic
field strength and LOS velocity are assumed to have a lin-
ear gradient with height, which is necessary in order to fit
the Stokes V profiles that show an asymmetry between the
blue and red lobes (for a detailed review see del Toro Iniesta
& Ruiz Cobo 2016). The rest of the atmospheric parameters
are kept constant with height. In order to reduce the num-
ber of free parameters, we assumed the magnetic filling factor
to be equal to one and did not use stray light contamination,
which are reasonable assumptions when high resolution ob-
servations are inverted as in this case. We use the Harvard
Smithsonian Reference Atmosphere (Gingerich et al. 1971)
as the initial model atmosphere. The average magnetic field
strength of canceling IN patches (at the moment when can-
cellation starts), is found to be about 160 G, which is roughly

Gosic et al. (2018)



One science example with STiC



The data: SST CRISP & CHROMIS + IRIS
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The data: SST CRISP & CHROMIS + IRIS



Multi-line non-LTE inversions
Leenaarts 800704-1232                               Project description                                                    CHROMATIC

We include a three-pronged theoretical approach of (1) inversion techniques to derive the 3D time-
dependent atmospheric structure of the Sun from SST observations, (2) advanced numerical 
simulations of the solar atmosphere and (3) computation of synthetic observations from the 
simulations for comparison with observations.  

The proposal has the following specific objectives: 
1. Record data in the He I 1083 nm line at 200 km resolution (3 times better than slit instruments) 

with a cadence of 5 s, using an innovative microlens-based imaging spectropolarimeter. 
2. Together with simultaneous data taken with the other instruments on the SST (CRISP imaging 

spectropolarimeter and CHROMIS imaging spectrograph) as well as IRIS data, obtain time-
resolved co-temporal and co-spatial diagnostics at all heights from the low photosphere to the 
high chromosphere. 

3. Through non-LTE inversion techniques derive the three-dimensional vector-magnetic field, 
velocity and thermal structure in the entire chromosphere from the observations. 

4. Interpret these data guided by state-of-the-art radiation-MHD simulations and advanced 3D 
non-LTE radiative transfer calculations to compute the emergent spectra from the simulations. 

5. By combining goals 1—4, answer the following important science questions: how and where is 
energy dissipated in the chromosphere; how does the chromosphere regulate mass and energy 
flow into the corona; and how does magnetic flux rise through the chromosphere? 

B Science questions 

B.1 How large is the non-thermal energy input into the chromosphere and how and where is it 
dissipated? 
Numerical simulations show that a hot chromosphere cannot be maintained without magnetic field 
(e.g., Leenaarts et al. 2011, A&A,530,124). How magnetic energy is dissipated in the chromosphere 
remains unknown. Waves play a role: However, compressive waves alone appear to be insufficient 
(Fossum & Carlsson 2005, Nature,435,929). Magnetic kink waves (Morton et al 2014, ApJ,784,29) 
and torsional waves (Van Ballegooijen et al. 2011, ApJ,736,3) have been suggested, but the 
evidence of actual dissipation of such waves remains scarce, and the relation between observed 
wave-like intensity variations and the magnetic field remains unclear (Leenaarts et al. 2015,ApJ,
Page �2

Figure 1: Height of formation for spectral lines that will be observed as computed with MULTI3D (Leenaarts & 
Carlsson 2009,ASPC,415,87) from a radiation-MHD simulation using BIFROST (Gudiksen et al. 2011,A&A,
531,154). The formation heights are indicated with optical depth unity (τ=1) at line centre for Mg II (purple), Ca II 
(blue) and Hα (orange). The gray gradation shows the formation range of the He I 1083 nm line, while the red and 
green solid colors the ranges of Ca II 8542 and Fe I 6301. The photosphere is located around z=0 Mm, the height 
where plasma β=1 is indicated with a dashed line, and the onset of the transition region with a solid black line. All 
spectral lines together cover the atmosphere from the photosphere to the upper chromosphere, and allow derivation of 
the magnetic field, temperature, velocities and to a certain extent mass density as function of height.

Courtesy J. Leenaarts
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Multi-line non-LTE inversions
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Multi-line non-LTE inversions
Temperature
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A word of caution

Inversion code always produce a result, which can be easily over-interpreted

Ask yourself the following questions BEFORE you start running the code:

• What scientific question am I trying to solve? (find it!)


• Do I need inversions to solve it? (if not, don’t use inversions!)


• What aspect of the inversion output can I use to solve my question? Try to 
anticipate what part of the output can help you to solve that question.

 This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research 
and innovation programme ( grant agreement 759548)



Exercises
http://dubshen.astro.su.se/~jaime/2018_HAO_school/exercises_stic.pdf

You will need python to visualise the input/output data:  
numpy, matplotlib, netCDF4, scipy, astropy

1. Synthesis of spectra with STiC (RH).


2. Inversion of the spectra from exercise 1.


3. Inversion of a non-LTE/CRD observation of Ca II 8542.


4. Inversion of an observation with LTE/nLTE-CRD/nLTE-PRD lines.


5. Regularization (4b).

http://dubshen.astro.su.se/~jaime/2018_HAO_school/exercises_stic.pdf

