SOLARNET-FoMICS Summer School "Solar spectropolarimetry: From virtual to real observations" September 9-14, 2019, Università della Svizzera italiana, Lugano

Aspects of magnetohydrodynamic simulations of stellar atmospheres

Oskar Steiner

Istituto Ricerche Solari Locarno (IRSOL), Locarno and
Leibniz-Institut für Sonnenphysik (KIS), Freiburg i.Br.
steiner@leibniz-kis.de

Table of content

Part I: Fundamentals of the numerics of hyperbolic partial differential equations
$\S 1$ Linear and non-linear advection equations
§ 2 Conservative methods
§ 3 Conservation laws - finite volumes
§ 4 Riemann solvers
$\S 5$ Explicit vs implicit and the CFL condition
References
Part II: Aspects of computational astrophysics
$\S 6$ The role of computer simulations in astrophysics
References
Part III: Concrete implementations
$\S 7$ Computer Codes
§ 8 Equations and boundary conditions
Table of content (cont.)§ 9 Radiation transfer
$\S 10$ Multi-group radiation transfer
§ 11 Heat conduction
§ 12 Non-equilibrium Hydrogen ionization
§ 13 Chemical reaction network
References
Part IV: MHD simulations: Case studies
§ 14 Basic postdictions
$\S 15$ Postdiction: Stokes- V asymmetry
§ 16 Postdiction: Stokes- V amplitude ratio
§ 17 Prediction: Non-magnetic bright points
§ 18 Prediction: Stellar photometric variability
§ 19 Experiment: MHD wave conversion
§ 19.1 Magnetic halos and shadows
References

Part I:

Fundamentals of the numerics of
hyperbolic partial differential equations

§ 1 Linear and non-linear advection equations

We start with the continuity equation as the reference equation for advection:

$$
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0, \quad \frac{\partial}{\partial t} \int_{\mathcal{V}} \rho \mathrm{d} V=-\oint_{\partial \mathcal{V}}(\rho \mathbf{v}) \cdot \mathbf{n} \mathrm{d} a
$$

in 1-D

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)=0 .
$$

With $u=$ const. (the advection velocity) we get the linear advection equation

$$
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0 .
$$

Its solution is

$$
\rho(x, t)=\rho_{0}(x-u t)
$$

Linear and non-linear advection equations (cont.)
The initial density profile is simply moved (advected) with velocity u.

Linear and non-linear advection equations (cont.)
The initial density profile is simply moved (advected) with velocity u.

Representation on a discrete numerical Eulerian grid:

Linear and non-linear advection equations (cont.)

$$
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0 \quad \Longrightarrow \quad \frac{\partial \rho}{\partial t}+u \frac{\rho_{j}-\rho_{j-1}}{\Delta x}=0
$$

Taylor expansion:

$$
\rho_{j-1}=\rho_{j}-\left.\frac{\partial \rho}{\partial x}\right|_{j} \Delta x+\left.\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}}\right|_{j} \Delta x^{2}-\left.\frac{1}{6} \frac{\partial^{3} \rho}{\partial x^{3}}\right|_{j} \Delta x^{3}+\ldots
$$

Substitution:

The diffusion term looks like a viscous term with viscosity $(\Delta x / 2) u$.

Linear and non-linear advection equations (cont.)

$$
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0 \quad \Longrightarrow \quad \frac{\partial \rho}{\partial t}+u \frac{\rho_{j}-\rho_{j-1}}{\Delta x}=0
$$

Taylor expansion:

$$
\rho_{j-1}=\rho_{j}-\left.\frac{\partial \rho}{\partial x}\right|_{j} \Delta x+\left.\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}}\right|_{j} \Delta x^{2}-\left.\frac{1}{6} \frac{\partial^{3} \rho}{\partial x^{3}}\right|_{j} \Delta x^{3}+\ldots
$$

Substitution:

> diffusion coefficient

$$
\underbrace{\frac{\partial \rho}{\partial t}+\left.u \frac{\partial \rho}{\partial x}\right|_{j}}_{\text {original l.h.s. }}-\underbrace{\left.\overbrace{\frac{1}{2} \Delta x u} \frac{\partial^{2} \rho}{\partial x^{2}}\right|_{j}}_{\text {diffusive term }}+\underbrace{\left.\frac{1}{6} u \Delta x^{2} \frac{\partial^{3} \rho}{\partial x^{3}}\right|_{j}-\ldots}_{\text {higher order terms }}=0
$$

The diffusion term looks like a viscous term with viscosity $(\Delta x / 2) u$.

Lesson: The discrete scheme does not solve the original equation but the original equation with an inherent numerical diffusion term added.

Linear and non-linear advection equations (cont.)
It is remarkable that Eulerian numerical schemes have generally difficulties to solve the linear advection equation accurately. Some amount of diffusion is unavoidable.

From Oran \& Boris (1987)

Linear and non-linear advection equations (cont.)

We next consider the momentum equation

$$
\frac{\partial}{\partial t}(\rho u)+\frac{\partial}{\partial x}\left(\rho u^{2}+p\right)-\varepsilon \rho \frac{\partial^{2} u}{\partial x^{2}}=0
$$

and assume $p=0$:

$$
u \frac{\partial \rho}{\partial t}+\rho \frac{\partial u}{\partial t}+u^{2} \frac{\partial \rho}{\partial x}+\rho 2 u \frac{\partial u}{\partial x}-\varepsilon \rho \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Using the continuity equation, the first term can be written as:

$$
\begin{aligned}
& u \frac{\partial \rho}{\partial t}=-u \frac{\partial}{\partial x}(u \rho)=-u^{2} \frac{\partial \rho}{\partial x}-u \rho \frac{\partial u}{\partial x} \\
& \Rightarrow \quad \rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}-\rho \varepsilon \frac{\partial^{2} u}{\partial x^{2}}=0
\end{aligned}
$$

Division by ρ and reordering terms leads to:

Linear and non-linear advection equations (cont.)
Burgers' equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\varepsilon \frac{\partial^{2} u}{\partial x^{2}}
$$

and the inviscid Burgers' equation

$$
u_{t}+u u_{x}=0
$$

Linear and non-linear advection equations (cont.)
Burgers' equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\varepsilon \frac{\partial^{2} u}{\partial x^{2}}
$$

and the inviscid Burgers' equation

$$
u_{t}+u u_{x}=0
$$

Linear and non-linear advection equations (cont.)
Solutions to the inviscid Burgers equation $u_{t}+u u_{x}=0$:

Solutions to the Burgers equation $u_{t}+u u_{x}=\varepsilon u_{x x}$:

Linear and non-linear advection equations (cont.)

Consider the inviscid Burgers equation $u_{t}+u u_{x}=0$ with the initial data

$$
u_{0}=\left\{\begin{array}{lll}
1 & \text { for } & x \leq 0 \\
0 & \text { for } & x>0
\end{array}\right.
$$

and construct a straightforward discretization:

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}+U_{j}^{n}\left(\frac{U_{j}^{n}-U_{j-1}^{n}}{h}\right)=0
$$

which is an "upwind" or "donor cell" scheme. How does this scheme handle the discontinuity of the initial data?

Linear and non-linear advection equations (cont.)

First we rewrite the scheme in explicite form:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h} U_{j}^{n}\left(U_{j}^{n}-U_{j-1}^{n}\right)
$$

Next we compute the first time step:

$$
\begin{aligned}
& \text { for } x<0: \quad U_{j}^{1}=1-\frac{k}{h} 1(1-1)=1, \\
& \text { for } x>0: \quad U_{j}^{1}=0-\frac{k}{h} 0(0-0)=0 \text {, } \\
& \text { for } \quad U_{j-1}=1 \quad \text { and } \quad U_{j}=0: \quad U_{j}^{1}=0-\frac{k}{h} 0(0-1) \quad=0 .
\end{aligned}
$$

Linear and non-linear advection equations (cont.)

First we rewrite the scheme in explicite form:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h} U_{j}^{n}\left(U_{j}^{n}-U_{j-1}^{n}\right)
$$

Next we compute the first time step:

$$
\begin{aligned}
& \text { for } \quad x<0: \quad U_{j}^{1}=1-\frac{k}{h} 1(1-1) \quad=1, \\
& \text { for } x>0: \quad U_{j}^{1}=0-\frac{k}{h} 0(0-0)=0 \text {, } \\
& \text { for } \quad U_{j-1}=1 \quad \text { and } \quad U_{j}=0: \quad U_{j}^{1}=0-\frac{k}{h} 0(0-1) \quad=0 . \\
& \Rightarrow \text { After one time step we recover the initial data again! }
\end{aligned}
$$

Whatever step size h and k we choose, the shock front stays at the same position.

Linear and non-linear advection equations (cont.)

True (solid curve) and computed (dotted curve) solution to Burgers' equation with adjacent initial data and using the upwind scheme. Note that

$$
u_{0}=\left\{\begin{array}{ll}
1.2 & \text { for } x \leq 0 \\
0.4 & \text { for }
\end{array} \quad x>0\right.
$$ the shock speed is wrong.

§ 2 Conservative methods

A good way to obtain conservation law form ist to start discretization from the conservative form of the PDE.

For example in case of the inviscid Burgers equation:

$$
\begin{aligned}
\text { quasi linear form } & : u_{t}+u u_{x}
\end{aligned}=0
$$

Using the same upwind discretization as before but starting from the conservative form of the PDE we obtain:

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}+\frac{1}{h}\left[\frac{1}{2}\left(U_{j}^{n}\right)^{2}-\frac{1}{2}\left(U_{j-1}^{n}\right)^{2}\right]=0 .
$$

Conservative methods (cont.)
The explicit form is

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h}\left[\frac{1}{2}\left(U_{j}^{n}\right)^{2}-\frac{1}{2}\left(U_{j-1}^{n}\right)^{2}\right]=0
$$

which is distinctly different from the difference equation that we had before:

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h} U_{j}^{n}\left(U_{j}^{n}-U_{j-1}^{n}\right)
$$

The first equation has the form

$$
U_{j}^{n+1}=U_{j}^{n}-\frac{k}{h}\left[F\left(U_{j}^{n}\right)-F\left(U_{j-1}^{n}\right)\right]
$$

hence, it is in conservation law form according to the definition. Applying it to the same initial data as before produces the correct solution with the correct shock speed.

Conservative methods (cont.)

True (solid curve) and computed (dotted curve) solution to Burgers' equation with adjacent initial data and using the conservative upwind scheme. Note that the shock speed is correct.

$$
u_{0}= \begin{cases}1.2 & \text { for } x \leq 0 \\ 0.4 & \text { for } \quad x>0\end{cases}
$$

Conservative methods (cont.)

Def.: A scheme is in conservation law form if it has the form

$$
\begin{aligned}
U_{j}^{n+1}= & U_{j}^{n}-\frac{k}{h}\left[F\left(U_{j-p}^{n}, U_{j-p+1}^{n}, \ldots, U_{j+q}^{n}\right)\right. \\
& \left.-F\left(U_{j-p-1}^{n}, U_{j-p}^{n}, \ldots, U_{j+q-1}^{n}\right)\right]
\end{aligned}
$$

F is called the numerical flux function.

Lesson: When dealing with shock waves, better use a scheme of conservation law form.

Conservative methods (cont.)
A scheme in conservation law form

$$
\begin{aligned}
U_{j}^{n+1}= & U_{j}^{n}-\frac{k}{h}\left[F\left(U_{j-p}^{n}, U_{j-p+1}^{n}, \ldots, U_{j+q}^{n}\right)\right. \\
& \left.-F\left(U_{j-p-1}^{n}, U_{j-p}^{n}, \ldots, U_{j+q-1}^{n}\right)\right]
\end{aligned}
$$

is consistent with the conservative PDE

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(f(u))
$$

if

$$
F(u, u, \ldots, u)=f(u)
$$

and there exists a K such that

$$
\left|F\left(U_{j-p}, \ldots, U_{j+q}\right)-f(u)\right| \leq K \max _{-p \leq i \leq q}\left|U_{j+1}-u\right|
$$

Conservative methods (cont.)

Theorem of Lax and Wendroff (1960)
Consider a sequence of grids, indexed by $l=1,2, \ldots$ with mesh parameters $k_{l}, h_{l} \rightarrow 0$ as $l \rightarrow \infty$. Let $U_{l}(x, t)$ denote the numerical solution computed with a consistent and conservative method on the l th grid. Suppose that U_{l} converges* to a function u as $l \rightarrow \infty$.

Then $u(x, t)$ is a weak solution of the conservation law.

* Convergence in the following sense:

Over every bounded set $\Omega=[a, b] \times[0, T]$

$$
\int_{0}^{T} \int_{a}^{b}\left|U_{l}(x, t)-u(x, t)\right| \mathrm{d} x \mathrm{~d} t \rightarrow 0 \text { as } l \rightarrow \infty
$$

and

$$
\operatorname{TV}(U(., t))<R \quad 0 \leq t \leq T, l=1,2, \ldots
$$

where

$$
\operatorname{TV}(v)=\sup \sum_{j=1}^{N}\left|v\left(\xi_{j}\right)-v\left(\xi_{j-1}\right)\right|
$$

Conservative methods (cont.)
Lesson: C^{3} : Conservation and consistency leads to convergence. Theorem of Lax and Wendroff (1960).

§ 3 Conservation laws - finite volumes

Consider the continuity equation:

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \tag{1}
\end{equation*}
$$

Integration over a finite volume, \mathcal{V}, and time period, T, leads to the integral form of this equation:

$$
\begin{equation*}
\int_{\mathcal{V}} \rho(T, \mathbf{x}) \mathrm{d} V-\int_{\mathcal{V}} \rho(0, \mathbf{x}) \mathrm{d} V=-\int_{0}^{T} \oint_{\partial \mathcal{V}}(\rho \mathbf{u}) \cdot \mathbf{n} \mathrm{d} s \mathrm{~d} t \tag{2}
\end{equation*}
$$

Solutions to Eq. (2) are called weak solutions to the partial differential equation, Eq. (1). Additionally to the solutions of Eq. (1), the set of solutions to Eq. (2) encompasses discontinuous solutions, because no derivatives appear in Eq. (2). Discontinuous solutions to the Euler equations represent shock fronts of the real world.

Conservation laws - finite volumes (cont.)
Consider the mass conservation in a one-dimensional finite tube element:

$$
\begin{align*}
m(t+\Delta t) & =m(t)+\langle\overline{\rho v}\rangle_{1} A \Delta t-\langle\overline{\rho v}\rangle_{2} A \Delta t \tag{3}\\
\langle\rho\rangle(t+\Delta t) & =\langle\rho\rangle(t)-\frac{\Delta t}{\Delta x}\left(\langle\overline{\rho v}\rangle_{2}-\langle\overline{\rho v}\rangle_{1}\right) \tag{4}
\end{align*}
$$

Eq. (4) has the form of a conservative finite volume scheme. in the limit of $\Delta x \rightarrow 0$ and $\Delta t \rightarrow 0 \quad \frac{\partial \rho}{\partial t}=\frac{\partial(\rho v)}{\partial x}$
But Eq. (3) is identical to the integral form Eq. (2):

$$
\int_{\mathcal{V}} \rho(T, \mathbf{x}) \mathrm{d} V-\int_{\mathcal{V}} \rho(0, \mathbf{x}) \mathrm{d} V=-\int_{0}^{T} \oint_{\partial \mathcal{V}}(\rho \mathbf{u}) \cdot \mathbf{n} \mathrm{d} s \mathrm{~d} t
$$

Conservation laws - finite volumes (cont.)
The conservative, finite volume formulation has three highly desirable properties:

- Conserved quantities (mass, momentum, energy) remain accurately conserved
- Discontinuous solutions are include by solving the integral form of the partial differential equation
- It fulfills one of two requirements of the theorem of Lax and Wendroff (1960) that says:

The approximate solution that is computed with a consistent and conservative scheme converges to a weak solution of the conservation law.

Conservation laws - finite volumes (cont.)
Euler's equation in one dimension is given by

$$
\mathbf{q}_{t}+\mathbf{f}(\mathbf{q})_{x}=0, \quad \mathbf{q}_{i}^{n+1}=\mathbf{q}_{i}^{n}+\frac{\Delta t}{\Delta x}\left[\mathbf{f}_{i-1 / 2}-\mathbf{f}_{i+1 / 2}\right]
$$

where

$$
\mathbf{q}=\left(\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right) \quad \mathbf{f}(\mathbf{q})=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
u(E+p)
\end{array}\right)
$$

In 3-D we have

$$
\mathbf{q}_{t}+\mathbf{f}(\mathbf{q})_{x}+\mathbf{g}(\mathbf{q})_{y}+\mathbf{h}(\mathbf{q})_{z}=0
$$

with

$$
\mathbf{q}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
E
\end{array}\right) \quad \mathbf{f}(\mathbf{q})=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
u(E+p)
\end{array}\right) \quad \ldots
$$

§ 4 Riemann solvers

A conservative finite volume scheme is an exact representation of the integral form of the partial differential equation describing the conservation law. The problem consists in computing the correct flux function $\mathbf{f}(\mathbf{q})$, i.e., $\langle\overline{\rho v}\rangle$ in the case of the continuity equation.

It turns out that these fluxes can be computed exactly.

Riemann solvers (cont.)

Idea of S.K. Godunov (1959): Piecewise constant reconstruction with discontinuities at cell interfaces

Riemann solvers (cont.)
The shock-tube problem

Riemann solvers (cont.)
The shock-tube problem

Riemann solvers (cont.)
The shock-tube problem

Riemann solvers (cont.)
The shock-tube problem

$\oint 5$ Explicit vs implicit and the CFL condition

Let's go back to the linear advection equation

$$
\frac{\partial \rho}{\partial t}+\frac{\partial(u \rho)}{\partial x}=0
$$

with constant velocity u. The straightforward upwind differentiation is

$$
\frac{\rho_{j}^{n+1}-\rho_{j}^{n}}{k}+\frac{u \rho_{j}^{n}-u \rho_{j-1}^{n}}{h}=0
$$

where $k=\Delta t$ and $h=\Delta x$. Next, we keep ρ at the new time step, $n+1$ on the left hand side and express it in terms of the known densities at the old time step n :

$$
\rho_{j}^{n+1}=\rho_{j}^{n}-\frac{k}{h} u\left(\rho_{j}^{n}-\rho_{j-1}^{n}\right) .
$$

This is called an explicit scheme.

Explicit vs implicit and the CFL condition (cont.)

For an explicit scheme, the time step k is restricted by the CFL-condition (Courant-Friedrichs-Lewy)

$$
C=\frac{u k}{h}<1
$$

Typically, u is the speed of sound, or the Alfvén speed, which both may become very large, hence, the time step k must be very small, which drastically increases the computation costs.

Explicit vs implicit and the CFL condition (cont.)

A way around the CFL bottleneck provides the implicit scheme. We still use the upwind differentiation but now in terms of the quantities at the new time step $n+1$:

$$
\frac{\rho_{j}^{n+1}-\rho_{j}^{n}}{k}+\frac{u \rho_{j}^{n+1}-u \rho_{j-1}^{n+1}}{h}=0
$$

Keeping all quantities at time $n+1$ on the left hand side, we obtain

$$
\rho_{j}^{n+1}-\frac{k}{h} u \rho_{j-1}^{n+1}+\frac{k}{h} u \rho_{j}^{n+1}=\rho_{j}^{n}, \quad \Longrightarrow \quad \rho_{j}^{n+1}(1+C)-C \rho_{j-1}^{n+1}=\rho_{j}^{n},
$$

which leads to the algebraic system of equations
$\left(\begin{array}{r}(C \\ \\ \\ \\ \\ \\ \end{array}\right.$

$$
\begin{array}{r}
C+ \\
- \\
0
\end{array}
$$

0
$(1+C)$
$-C$
\vdots
0

0	\cdots	0	0
0	\cdots	0	0
$(1+C)$	\cdots	0	0
\vdots	\ddots	\vdots	\vdots
0	\cdots	0	$-C$

$$
\left.\begin{array}{c}
-C \\
0 \\
0 \\
(1+C)
\end{array}\right)\left(\begin{array}{c}
\rho_{1}^{n+1} \\
\rho_{2}^{n+1} \\
\rho_{3}^{n+1} \\
\vdots \\
\rho_{N}^{n+1}
\end{array}\right)=\left(\begin{array}{c}
\rho_{1}^{n} \\
\rho_{2}^{n} \\
\rho_{3}^{n} \\
\vdots \\
\rho_{N}^{n}
\end{array}\right)
$$

Explicit vs implicit and the CFL condition (cont.)
Typically, an implicit scheme is not subject to the CFL restriction. However, the time step should not be arbitrarily large to avoid large discretization (dispersion) errors.

References

Lax P.D. and Wendroff, B.: 1960, Systems of conservation laws, Comm. Pure Appl. Math., 13, 217-237.

Laney, C.B.: 1998, Computational Gasdynamics, Cambridge University Press, Cambridge
LeVeque, R.J.: 2002, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge
LeVeque, R.J.: 1992, Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel

LeVeque, R.J., Mihalas, D., Dorfi, E.A., and Müller, E.: 1998, Computational Methods for Astrophysical Fluid Flow, O. Steiner \& A. Gautschy (eds.), Springer-Verlag, Berlin
Oran E.S. and Boris, J.P.: 2001, Numerical Simulation of Reactive Flow, Cambridge University Press, 2nd ed.

Toro, E.F.: 1999, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin

Part II: Aspects of computational astrophysics

$\S 6$ The role of computer simulations in astrophysics

Historical Perspective:

- 1950's and 1960's: Stellar evolution calculations (Martin Schwarzshild in the U.S. and Rudolph Kippenhahn in Göttingen, Germany). At that time computers were viewed as tools for the numerical integration rather than as a tool for experimentation.

Evolution of a $5 M_{\odot}$ star in the HRD
Kippenhahn et al. (1965, Zeitschrift für Astrophysik)

Rudolph Kippenhahn

The role of computer simulations in astrophysics (cont.)

- 1960's: N-body stellar dynamics simulations (e.g. tidal interaction of galaxies) and hydrodynamical systems (e.g. core collapse supernovae). Notion of computational astrophysics as experimental astronomy.

The antenna nebula NGC 4038/4039 evolved from a collision of two similarly sized spiral galaxies. Left: Observed present state. Right: Present state from a computer simulation of the complete collision (www.ifa.hawaii.edu/barnes).

These simulations are generally motivated by the question "What happens if?" more so than "What is the solution to these equations?".

The role of computer simulations in astrophysics (cont.)
Computational astrophysics is the experimentation with astrophysical objects in a virtual (numerical) laboratory, comparable to the manipulation with real probes in classical physics experiments.

The role of computer simulations in astrophysics (cont.)
$\underline{\text { Role of Computational astrophysics: }}$

Adapted from M. Norman (1997)

The role of computer simulations in astrophysics (cont.)
Simulations tend to model a time dependent physical system with some degree of realism. Usually, simulated systems have no simple closed form analytic solutions. Otherwise, one rather talks of modeling.

Realistic simulations produce observable quantities like intensity maps or polarimetric maps that look like corresponding actual observations, so called virtual or synthetic observations. Typically, a realistic solar simulation uses a realistic equation of state that takes ionization and the composition of the solar plasma into account and it carries out radiation transfer with actual opacities as occurring in the solar plasma.

The role of computer simulations in astrophysics (cont.)
Progress in computational astrophysics:

Adapted from M. Norman (1997)

References

Kippenhahn, R., Thomas, H.-C., and Weigert, A.: 1965, Sternetnwicklung IV. Zentrales
Wasserstoff- und Heliumbrennen bei einem Stern von 5 Sonnenmassen,
Zeitschrift für Astrophysik 61, 241-267
Kippenhahn, R.: 2008, Als die Computer die Astronomie eroberten, Reviews in Modern Astronomy 20, 1-14

Norman, M.: 1997, Computational Astrophysics: The "New Astronomy" for the 21st Century, in ASP Conf. Series Vol. 123, D.A. Clarke \& M.J. West (eds.), p. 3-14

Ostriker, J.P.: 2000, Historical Reflection on the Role of Numerical Modeling in Astrophysics, Reviews in Modern Astronomy 13, 1-11

Part III: Concrete implementations

§ 7 Computer Codes

The following is a non-exhaustive, arbitrarily selected list of codes that may or may not be suitable for serving your needs. Details are without guarantee.

acronym	AMR-VAC
name	Versatile Advection Code
web page	http://amrvac.org/doc-contents.html
principal authors	Gábor Tóth / Ronny Keppens
language	dimension independent notation, (convertible to FORTRAN via VAC Preprocessor)
MHD	yes
radiative transfer	no
parallelization	HPF, MPI, OpenMP
grid	structured grid; adaptive/AMR
comments:	The code features a variety of numerical methods for the advection step including TVD schemes and Riemann solvers; AMR-VAC is a version of VAC with automatic adaptive mesh refinement, AMR.
References:	-

PENCIL	NIRVANA
http://www.nordita.org/software/pencil-code/	http://nirvana-code.aip.de/
Axel Brandenburg / Wolfgang Dobler	Udo Ziegler
FORTRAN	C
yes	yes
yes	no
MPI	MPI
Cartesian; adaptive/static	Cartesina; cylidrical; spherical; adap- tive/AMR
Code uses a high-order fnite-difference scheme; primarily designed to deal with weakly compressible turbulent flows.	Giecewise linear TVD reconstruction; flux-CT scheme; dual energy formalism.
https://arxiv.org/abs/astro-ph/0111569	https://www.sciencedirect.com/science/article/ pii/S0021999110005784?via\%3Dihub

toc -ref

Computer Codes (cont.)

acronym	CO^{5} BOLD	MURaM	
name	Conservative Code for the Computation of Compressible	MPS/University of Chicago Radiative MHD	Bifrost
web page	Convection in a Box of L Dimensions http://www.astro.uu.se//bf/co5bold_main.html	https://www2.mps.mpg.de/projects/ solar-mhd/muram_site/index.html	-
principal author	Bernd Freytag	Alexander Vögler / Matthias Rempel	Mats Carlsson \& Boris Gudiksen
language	FORTRAN	-	C
MHD	yes	yes	yes
radiative transfer	yes/non-grey	yes/non-grey	yes/non-grey
parallelization	OpenMP	MPI	MPI
grid	Cartesian; adaptive/static	Cartesian; adaptive/static	Cartesian, adaptive/static
comments:	Riemann solver based code; realistic EOS and opacities; chemical reaction network; dynamic hydrogen ionization.	Fourth-order accurate; explicit finite differences TVD scheme; realistic EOS and opacities; includes coronal physics	Staggered grid with 6th order differential operators. Realistic EOS and opacities; Spitzer heat conduction; dynamic H and He ionization, specialized to incl, chromosphere \& corona.
References:	https://arxiv.org/abs/1110.6844	https://www.aanda.org/articles/ aa/pdf/2005/01/aa1507.pdf	https://arxiv.org/abs/1105.6306
acronym	Mancha	ANTARES	CLAWPACK
name	Multi-physics, Advanced, Non-ideal Code for High-resolution simulations of the solar Atmosphere	A Numerical Tool for Astrophysical REsearch	Conservation Law Package
web page	http://www.iac.es/proyecto/PI2FA/pages/code	s.php	http://www.amath.washington.edu/ claw
principal author	Elena Khomenko	H.J. Muthsam	Randall J. LeVeque
language	FORTRAN	FORTRAN	FORTRAN
MHD	yes	yes	yes
radiative transfer	yes	yes/non-gray	no
parallelization	MPI	MPI; OpenMP	MPI
grid	Cartesian; AMR	Cartesian; spherical; AMR/static	adaptive/AMR
comments:	4th order central differences; realistic EOS.	Features various high-resolution schemes	Features various solvers incl. Riemann solvers; solves problems on curved manifolds
References:	https://arxiv.org/abs/1006.2998	http://arxiv.org/abs/0905.0177	https://peerj.com/articles/cs-68/

Computer Codes (cont.)

acronym			
name	ZEUS-MP/2	Enzo	FLASH
web page	http://ascl.net/1102.028	https://enzo-project.org	http://flash.uchicago.edu/website/home/
principal author	Stone \& Norman	Michael Norman and Enzo community	Alliances Center for Astrophysical
language	FORTRAN	-	Thermonuclear Flashes FORTRAN
MHD	yes	yes	yes
radiative transfer	no	yes	no
parallelization	MPI	yes	MPI
grid	Cartesian, spherical; cylindricalAMR/static	Cartesian, AMR	Cartesian, spherical, cylindrical polar; AMR
comments:		grid-based hybrid code (hydro + N -Body), designed to simulate cosmological structure formation; Enzo branched off from ZEUS	HD: split PPM, unsplit MUSCL-Hancock; MHD: split 8-wave solver, unsplit staggered mesh; split relativistic hydro solver; reactive gas dynamics
References:	http://adsabs.harvard.edu/ abs/2006ApJS..165..188H	-	https://iopscience.iop.org/article/ 10.1086/317361/pdf
acronym			
name	ATHENA++	RAMSES	
web page	https://princetonuniversity.github.io/athena/	https://www.ics.uzh.ch/ teyssier/ ramses/RAMSES.html	
principal author	James M. Stone	Romain Teyssier	
language	C++	FORTRAN	
MHD	yes/relativistic	yes	
radiative transfer	-	no	
parallelization	MPI/OpenMP; task-based execution	MPI	
grid	Cartesian, cylindrical; spherical-polar; Various general-relativistic coordinates; AMR	Cartesian, tree-based AMR	
comments:	special and general relativistic hydrodynamics and MHD.	Self-gravitating magneto fluid dynamics	
References:	https://arxiv.org/abs/1711.07439	https://arxiv.org/abs/astro-ph/0111367	

Computer Codes (cont.)

Example $\mathrm{CO}^{5} \mathrm{BOLD}$

$\mathrm{CO}^{5} \mathrm{BOLD}$ is designed for simulating hydrodynamics and radiative transfer in the outer and inner layers of stars. Additionally, it can treat magnetohydrodynamics, non-equilibrium chemical reaction networks, dynamic hydrogen ionization, and dust formation in stellar atmospheres.

Box in a star

Simulation of solar granulation with $C O^{5} B O L D$. $400 \times 400 \times 165$ grid cells, $11.2 \times 11.2 \mathrm{Mm}$, Contrast at $\lambda \approx 620 \mathrm{~nm}$ is 16.65%.

Courtesy M. Steffen, AIP Potsdam

Star in a box

Simulation of a Betelgeusew with $C O^{5} B O L D$. 235^{3} grid cells, $m_{\text {star }}=12 m_{\odot}$,
$T_{\mathrm{eff}}=3436 \mathrm{~K}, R_{\text {star }}=875 R_{\odot}$
Courtesy Bernd Freytag, Uppsala

Computer Codes (cont.)

computational domain

convection zone
convection zone base

Size of a typical three-dimensional computational domain (left) in comparison with the size of the Sun (right).
toc — ref

Computer Codes (cont.)

Bolometric intensity maps

With magnetic fields:
Magnetohydrodynamic simulation.

Without magnetic fields:
Hydrodynamic simulation

Courtesy,
F. Calvo.

Horizontal cross-section through the chromosphere of a magnetic field-free simulation. Colors show temperature. Shock fronts and temperature spikes are ubiquitous.

§ 8 Equations and boundary conditions

Starting point are the equations of magnetohydrodynamics:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v}) & =0 \\
\frac{\partial \rho \mathbf{v}}{\partial t}+\nabla \cdot\left(\rho \mathbf{v} \mathbf{v}+\left(P+\frac{\mathbf{B} \cdot \mathbf{B}}{2}\right) \mathbf{I}-\mathbf{B B}\right) & =\rho \mathbf{g} \\
\frac{\partial \mathbf{B}}{\partial t}+\nabla \cdot(\mathbf{v B}-\mathbf{B} \mathbf{v}) & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot\left(\left(E+P+\frac{\mathbf{B} \cdot \mathbf{B}}{8 \pi}\right) \mathbf{v}-\frac{1}{4 \pi}(\mathbf{v} \cdot \mathbf{B}) \mathbf{B}+\mathbf{F}_{\mathrm{rad}}\right) & =\rho \boldsymbol{g} \cdot \boldsymbol{v}
\end{aligned}
$$

ρ : mass density; v: velocity; P : gas pressure; \mathbf{B} : magnetic field; \mathbf{g} gravitational acceleration; E : total energy density; $\mathbf{F}_{\text {rad }}$: radiative flux; t : time

$$
E=\rho e_{\mathrm{int}}+e_{\mathrm{kin}}+e_{\mathrm{mag}}=\rho e_{\mathrm{int}}+\rho \frac{\mathbf{v} \cdot \mathbf{v}}{2}+\frac{\mathbf{B} \cdot \mathbf{B}}{2}
$$

Equations and boundary conditions (cont.)
The equations of ideal magnetohydrodynamics in conservation law form:

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\nabla \cdot \mathcal{F}=\boldsymbol{S}
$$

where the vector of conserved variables \boldsymbol{U}, the source term \boldsymbol{S} due to gravity and radiation, and the flux tensor \mathcal{F} are

$$
\boldsymbol{U}=(\rho, \rho \boldsymbol{v}, \boldsymbol{B}, E), \quad \boldsymbol{S}=\left(0, \rho \boldsymbol{g}, 0, \rho \boldsymbol{g} \cdot \boldsymbol{v}+q_{\mathrm{rad}}\right)
$$

$$
\mathcal{F}=\left(\begin{array}{c}
\rho \boldsymbol{v} \\
\rho \boldsymbol{v} \boldsymbol{v}+\left(p+\frac{\boldsymbol{B} \cdot \boldsymbol{B}}{8 \pi}\right) \boldsymbol{I}-\frac{\boldsymbol{B} \boldsymbol{B}}{4 \pi} \\
\boldsymbol{v} \boldsymbol{B}-\boldsymbol{B} \boldsymbol{v} \\
\left(E+p+\frac{\boldsymbol{B} \cdot \boldsymbol{B}}{8 \pi}\right) \boldsymbol{v}-\frac{1}{4 \pi}(\boldsymbol{v} \cdot \boldsymbol{B}) \boldsymbol{B}
\end{array}\right)
$$

Equations and boundary conditions (cont.)
The MHD equations must be closed by an equation of state which gives the gas pressure as a function of the density and the thermal energy per unit mass $e_{\text {int }}=\epsilon$

$$
p=p(\rho, \epsilon)
$$

usually available to the program in tabulated form.
In the most simplest case of a polytropic ideal gas $\epsilon=\frac{P}{(\gamma-1) \rho}$, where $\gamma=$ const.
For the numerical treatment, $\frac{\partial \boldsymbol{U}}{\partial t}+\nabla \cdot \mathcal{F}=\boldsymbol{S}$ is usaully solved in two steps:
(1) $t \rightarrow t+\Delta t: \frac{\partial \boldsymbol{U}}{\partial t}+\nabla \cdot \mathcal{F}=0 \quad$ (2) $t \rightarrow t+\Delta t \quad \frac{\partial \boldsymbol{U}}{\partial t}=\boldsymbol{S}$

This procedure is called operator splitting.

5. Equations and boundary conditions (cont.)

In practice it is not the ideal MHD-equations that are solved but rather some kind of a viscous and resistive form of the equations with flux tensor

$$
\mathcal{F}=\left(\begin{array}{c}
\rho \boldsymbol{v} \\
\rho \boldsymbol{v} \boldsymbol{v}+\left(p+\frac{\boldsymbol{B} \cdot \boldsymbol{B}}{8 \pi}\right) \boldsymbol{I}-\frac{\boldsymbol{B} \boldsymbol{B}}{4 \pi}-\boldsymbol{\sigma} \\
\boldsymbol{B} \boldsymbol{v}-\boldsymbol{v} \boldsymbol{B}-\eta\left[\nabla \boldsymbol{B}+(\nabla \boldsymbol{B})^{T}\right] \\
\left(E+p+\frac{\boldsymbol{B} \cdot \boldsymbol{B}}{8 \pi}\right) \boldsymbol{v}-\frac{1}{4 \pi}(\boldsymbol{v} \cdot \boldsymbol{B}) \boldsymbol{B}+\eta(\boldsymbol{j} \times \boldsymbol{B})-\boldsymbol{\sigma} \boldsymbol{v}+\boldsymbol{q}^{\text {turb }}
\end{array}\right)
$$

where $\boldsymbol{\sigma}=\nu \rho\left[(\boldsymbol{\nabla} \boldsymbol{v})+(\boldsymbol{\nabla} \boldsymbol{v})^{T}-(2 / 3)(\boldsymbol{\nabla} \cdot \boldsymbol{v}) \boldsymbol{I}\right]$ is the viscous stress tensor, $\eta=\left(\nu / \operatorname{Pr}_{\mathrm{m}}\right)=1 /(4 \pi \sigma)$ the magnetic diffusivity with σ being the electric conductivity, and $\eta(\boldsymbol{j} \times \boldsymbol{B})=(\eta / 4 \pi)(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} . \operatorname{Pr}_{\mathrm{m}}$ is the magnetic Prandtl number. $\boldsymbol{q}^{\text {turb }}$ is a turbulent diffusive heat flux, which would typically be proportional to the entropy gradient: $\boldsymbol{q}^{\text {turb }}=-(1 / \operatorname{Pr}) \nu \rho T \nabla s$, where Pr is the Prandtl number.

5. Equations and boundary conditions (cont.)

Typically, ν is not taken to be the molecular viscosity coefficient but rather some turbulent value that takes care of the dissipative processes that cannot be resolved by the computational grid. Such subgrid-scale viscosities should only act where velocity gradients are strong causing srong turbulence. Therefore, they typically depend on velocity gradients like in the Smagorinsky-type of turbulent viscosity where

$$
\begin{aligned}
\nu^{\mathrm{t}}= & c\left\{2\left[\left(\frac{\partial v_{x}}{\partial x}\right)^{2}+\left(\frac{\partial v_{y}}{\partial y}\right)^{2}+\left(\frac{\partial v_{z}}{\partial z}\right)^{2}\right]+\right. \\
& \left.\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right)^{2}+\left(\frac{\partial v_{x}}{\partial z}+\frac{\partial v_{z}}{\partial x}\right)^{2}+\left(\frac{\partial v_{y}}{\partial z}+\frac{\partial v_{z}}{\partial y}\right)^{2}\right\}^{1 / 2}
\end{aligned}
$$

where c is a free parameter. This parameter is normally chosen as small as possible just in order to keep the numerical integration stable and smooth, but otherwise having no effect on large scales.

5. Equations and boundary conditions (cont.)

Some numerical high resolution schemes feature an inherent dissipation that acts like the explicit dissipative terms shown in the flux tensor above. This artificial viscosity is made as small as possible but still large enough to keep the numerical scheme stable. One then only programs the ideal equations. Of course, in this case it is difficult to quote the actual Reynolds and Prandtl numbers because they change from grid cell to grid cell depending on the flow. For certain applications it might be preferable to explicitly include the dissipative terms in the equations using constant dissipation coefficients, which yield well defined dimensionless numbers. However, one handles this, when integrating the ideal equations on a discrete computational grid, one is always locked with a discretization error that normally assumes the form of dissipative terms in the non-ideal equations.

See LeVeque, Mihalas, Dorfi, \& Müller (1998) for more on computational methods for astrophysical fluid flow.
5. Equations and boundary conditions (cont.)

Typical boundary conditions for the thermal variables and the velocities

$$
\frac{\partial v_{x, y, z}}{\partial z}=0 \quad\left(\text { or } \quad v_{z}=0\right) ; \lim _{t \rightarrow \infty} \epsilon=\epsilon_{0}
$$

$$
\begin{gathered}
\frac{\partial v_{x, y}}{\partial z}=0 ; \int \rho v_{z} \mathrm{~d} \sigma=0 ; \text { outflow: } \frac{\partial s}{\partial z}=0 \\
\text { inflow: } s=s_{0}
\end{gathered}
$$

Periodic lateral boundary conditions in all variables. Open bottom boundary in the sense that the fluid can freely flow in and out of the computational domain under the condition of vanishing total mass flux.

Reflecting (closed) top boundary or open (transmitting) top boundary.

Equations and boundary conditions (cont.)
Note: For a pure hydrodynamic simulation, there are only three free parameters:

- The entropy of the inflowing material, s_{0}, which determines the effective temperature, $T_{\text {eff }}$;
- The chemical composition of the plasma, which determines the equation of state and opacities;
- The surface gravity, $g_{\text {surf }}$.

For the Sun, these parameters are all fixed.
5. Equations and boundary conditions (cont.)

Boundary conditions for the magnetic field

$$
B_{x, y}=0 ; \frac{\partial B_{z}}{\partial z}=0
$$

$$
B_{x, y}=0 ; \frac{\partial B_{z}}{\partial z}=0
$$

$$
\frac{\partial B_{x, y, z}}{\partial z}=0
$$

inflow: $B_{y}=B_{z}=0, B_{x}=$ const.
5. Equations and boundary conditions (cont.)

Boundary conditions for the magnetic field

$$
B_{x, y}=0 ; \frac{\partial B_{z}}{\partial z}=0
$$

$$
\frac{\partial B_{x, y, z}}{\partial z}=0
$$

$$
B_{x, y}=0 ; \frac{\partial B_{z}}{\partial z}=0
$$

Note: The presence of a magnetic field introduces a continuous spectrum of parameters regarding to the initial condition for the magnetic field or conditions for a self exciting dynamo.

§ 9 Radiation transfer

κ_{ν} : opacity per unit mass $\left[\mathrm{cm}^{2} \mathrm{~g}^{-1}\right.$]
τ : optical distance to \boldsymbol{r}

Formal solution of the radiative transfer equation
$I(\boldsymbol{r}, \boldsymbol{n})=I_{0} e^{-\left(\tau_{0}-\tau\right)}+\int_{\tau}^{\tau_{0}} S\left(\tau^{\prime}\right) e^{-\left(\tau^{\prime}-\tau\right)} \mathrm{d} \tau^{\prime}$
For short: $\quad I(\boldsymbol{r}, \boldsymbol{n})=\boldsymbol{\Lambda} S \quad$ (Lambda operator)

The radiative transfer equation $\frac{\mathrm{d} I_{\nu}}{\mathrm{d} \tau_{\nu}}=I_{\nu}-S_{\nu} \quad \frac{\mathrm{d} I_{\nu}}{\mathrm{d} s}=-\kappa_{\nu} \rho\left(I_{\nu}-S_{\nu}\right)$ $I=I(\mathbf{r}, \hat{\mathbf{n}}, \nu, t)$ has dimension $\left[\operatorname{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{hz}^{-1} \mathrm{sr}^{-1}\right.$]

Radiation transfer (cont.)

$$
\text { Radiative flux } \quad \mathbf{F}_{\mathrm{rad}}=\int_{4 \pi} \int_{0}^{\infty} I(\mathbf{r}, \hat{\mathbf{n}}, \nu) \hat{\mathbf{n}} \mathrm{d} \nu \mathrm{~d} \omega \quad\left[\operatorname{erg~cm}^{-2} \mathrm{~s}^{-1}\right]
$$

Using the radiative transfer equation we obtain for the divergence of the radiative flux:

$$
\begin{aligned}
\nabla \cdot \mathbf{F}_{\mathrm{rad}} & =\int_{4 \pi} \int_{0}^{\infty}(\hat{\mathbf{n}} \cdot \nabla) I(\mathbf{r}, \hat{\mathbf{n}}, \nu) \mathrm{d} \nu \mathrm{~d} \omega \\
& =\int_{4 \pi} \int_{0}^{\infty}(\kappa(\mathbf{r}, \nu) \rho(\mathbf{r}) S(\mathbf{r}, \nu)-\kappa(\mathbf{r}, \nu) \rho(\mathbf{r}) I(\mathbf{r}, \hat{\mathbf{n}}, \nu)) \mathrm{d} \nu \mathrm{~d} \omega \\
& =4 \pi \int_{0}^{\infty} \kappa(\mathbf{r}, \nu) \rho(\mathbf{r})(S(\mathbf{r}, \nu)-J(\mathbf{r}, \nu)) \mathrm{d} \nu=-q_{\mathrm{rad}}
\end{aligned}
$$

With $J(\mathbf{r}, \nu)=\frac{1}{4 \pi} \int_{4 \pi} I(\mathbf{r}, \hat{\mathbf{n}}, \nu) \mathrm{d} \omega \quad$ being the mean intensity.
\qquad

Radiation transfer (cont.)
q_{rad} (per unit mass) in a vertical section through a 3D solar model. $z=1.3 \mathrm{Mm}$ corresponds to $\left\langle\tau_{500}\right\rangle=1$. Dark/bright shades indicate radiative cooling/heating.

From Steffen (2017).

Radiation transfer (cont.)

Integration on long characteristics

HD grid: $\rho, \mathrm{e} \xrightarrow{\mathrm{EOS}} p, T \rightarrow$ source function S , opacity $\rho \kappa$
\rightarrow interpolation \rightarrow RT Rays system: $S, \rho \kappa$
\rightarrow solve RT for $y_{\nu}=(1 / 2)\left(I_{\nu}^{+}+I_{\nu}^{-}\right)-S_{\nu}$ (Feautrier scheme)
RT Ray system: $\rho \kappa y_{\nu}=q_{\text {rad }}^{\theta, \phi} \rightarrow$ flux conservative back-interpoation
$\rightarrow \mathrm{HD}$ grid: $q_{\mathrm{rad}}^{\theta, \phi} \quad \rightarrow \quad \sum_{\theta, \phi} q_{\mathrm{rad}}^{\theta, \phi}=q_{\mathrm{rad}}$

Radiation transfer (cont.)
Integration on short characteristics

RT Rays system: start at top compute I^{-}, start at bottom compute I^{+}

$$
\rightarrow \quad q_{\mathrm{rad}}(\theta, \phi)=q_{\mathrm{rad}}^{-}(\theta, \phi)+q_{\mathrm{rad}}^{+}(\theta, \phi)
$$

important: flux conservative interpolation of intensities

Radiation transfer (cont.)
Conservation of radiative flux

Radiation transfer (cont.)

- "Box in a star" simulations of the surface layers of four spectral types;
- Each simulation is run twice: with and without magnetic fields;
- Initial vertical homogeneous field of 50 G and 100 G ;
- Multi-group radiation transfer using 5 opacity bins;
- From Salhab et al. (2018, A\&A 614, A78).

$$
\begin{aligned}
& q_{\mathrm{rad}}=-\nabla \cdot \boldsymbol{F}_{\mathrm{rad}}=4 \pi \rho \int \kappa_{\lambda}\left(J_{\lambda}-B_{\lambda}\right) \mathrm{d} \lambda \\
& \int \kappa_{\lambda}\left(J_{\lambda}-B_{\lambda}\right) \mathrm{d} \lambda=\sum_{j} \kappa_{\lambda_{j}}\left(J_{\lambda_{j}}-B_{\lambda_{j}}\right) w_{\lambda_{j}} \\
&=\sum_{i} \sum_{j(i)} \kappa_{\lambda_{j}}\left(J_{\lambda_{j}}-B_{\lambda_{j}}\right) w_{\lambda_{j}} \\
&=\sum_{i} \sum_{j(i)} \kappa_{\lambda_{j}}\left(\boldsymbol{\Lambda}_{\lambda_{j}}\left(B_{\lambda_{j}}\right)-B_{\lambda_{j}}\right) w_{\lambda_{j}} \\
& \approx \sum_{i} \kappa_{i}\left(\boldsymbol{\Lambda}_{i}-\mathbf{1}\right)\left(\sum_{j(i)} B_{\lambda_{j}} w_{\lambda_{j}}\right) \\
& \doteq \sum_{i} \kappa_{i}\left(\boldsymbol{\Lambda}_{i}-\mathbf{1}\right)\left(B_{i} w_{i}\right) \doteq \sum_{i} \kappa_{i}\left(J_{i}-B_{i}\right) w_{i}
\end{aligned}
$$

Multi-group radiation transfer (cont.)
Strategy for opacity binning:

- concentrate on radiative transfer in vertical direction,
- group together frequencies with as similar a $\tau_{\nu}(s)$-relationship as possible, so that $\Lambda_{\lambda_{j(i)}}$ is very similar $\forall j$ of a given bin i,
- choose clever averaging procedure for κ_{ν}, (Rosseland averages for $\tau_{i}>1$, Planck averages for $\tau_{i}<1$).

See also Nordlund, A: 1982, A\&A 107,1; Ludwig, H.-G.: 1992, thesis Univ.
Kiel; Vögler et al.: 2004, A\&A 421, 741; Hayek et al.: 2010, A\&A 517,A49.

Multi-group radiation transfer (cont.)

Testing the OBM. Integrated radiative flux

Multi-group radiation transfer (cont.)
Intensity maps for different opacity bins

Notice that bin 3 to 5 show "inverse granulation" as their opacities represent medium to strong line cores.
__ toc - ref

§11 Heat conduction

If the transition region and corona is to be included in the simulation, heat conduction must be taken into account as an important mode of energy transport. For a fully ionized plasma, the heat flux (carried by the electrons) is given by

$$
F_{c}=-\kappa_{0} T^{5 / 2} \nabla_{\|} T
$$

where the gradient of T is taken along the magnetic field $\left(\nabla_{\|}\right)$and $\kappa_{\|}=\kappa_{0} T^{5 / 2}$ is the Spitzer (1956) coefficient for thermal conduction along the magnetic field. The conductive part of the energy equation is typically handled in a separate operator splitting step

$$
\frac{\partial E}{\partial t}=-\nabla \cdot \boldsymbol{F}_{c}=-\nabla_{\|}\left[\kappa_{0} T^{5 / 2} \nabla_{\|} T\right]
$$

Since this is a parabolic partial differential equation, the CFL condition scales $\propto \Delta x^{2}$ instead of $\propto \Delta x$ as for hyperbolic equations. This means, it must be solved with an implicit numerical scheme to achieve tolerable time stepping.

Heat conduction (cont.)
The second important ingredient is a (optically thin) radiative loss function, which takes care of the radiative loss $\left(q_{\mathrm{rad}}\right)$ in the tenuous atmosphere from the upper
chromosphere up to the corona. It can be approximated as

$$
q_{\mathrm{rad}, \text { thin }}=-n_{\mathrm{H}} n_{\mathrm{e}} f(T) e^{-P / P_{0}}
$$

n_{H} and n_{e} are the number densities of H and electrons, respectively, $f(T)$ is a function of the temperature and $\exp \left(-P / P_{0}\right)$ provides a cutoff where $P>P_{0}$.

Heat conduction (cont.)

Two-dimensional Bifrost simulation from the top of the convection zone to the corona, including the transition region (transition from reddish to white colors). The color shading indicate the temperature above the lower white curve ($\tau_{c}=1$). Below it, the colors indicate the vertical velocity, downflows being red. The upper white curve indicates $\beta=1$. Above it the magnetic field (black field lines) dominates the gas pressure.

From Hansteen \& Carlsson (2005).

Heat conduction (cont.)

Two-dimensional Bifrost simulation from the top of the convection zone to the corona, including the transition region (transition from reddish to white colors). The color shading indicates the temperature.

Courtesy, D. Nóbrega Siverio.

$\S 11$ Heat conduction (cont.)

Three-dimensional $\mathrm{CO}^{5} \mathrm{BOLD}$ radiation-hydrodynamic simulation of surface convection including chromospheric layers and weak magnetic fields. The dimensions of the vertical section are: Width, 9600 km ; Height above the surface of $\tau=1,1600 \mathrm{~km}$; Depth below this surface level: 1200 km . Colores indicate the temperature. No transition region is present.

Courtesy, F. Calvo, IRSOL

§ 12 Non-equilibrium Hydrogen ionization

Under the condition of the dynamic solar chromosphere, the assumption of statistical equilibrium

transitions from i to other levels
transitions from others to level i
is not valid anymore. Instead the dynamic change in level populations and ionization of H and He must be taken into account. We then solve the time-dependent rate equations

$$
\frac{\partial n_{i}}{\partial t}+\nabla \cdot\left(n_{i} \mathrm{v}\right)=\sum_{j \neq i}^{n_{l}} n_{j} P_{j i}-n_{i} \sum_{j \neq i}^{n_{l}} P_{i j}
$$

$P_{i j}=C_{i j}+R_{i j}$, where we assume that the radiation field in each transition, both, bound-bound and bound-free, can be described by a formal radiation temperature $T_{\text {rad }}$.

Non-equilibrium Hydrogen ionization (cont.)
In the method of fixed radiative rates (Sollum 1999), we assume that the radiation field in each transition, both, bound-bound and bound-free, can be described by a formal radiation temperature:

$$
J_{\nu}=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{\mathrm{e}^{h \nu / k T_{\mathrm{rad}}}-1}
$$

Thus, we obtain the fixed radiative rates for bound-bound transitions

$$
\begin{aligned}
R_{l u} & =B_{l u} J_{\nu_{0}}=\frac{4 \pi^{2} e^{2}}{h \nu_{0} m_{e} c} f_{l u} \frac{2 h \nu_{0}^{3}}{c^{2}} \frac{1}{\mathrm{e}^{h \nu_{0} / k T_{\mathrm{rad}}}-1} \\
R_{u l} & =A_{u l}+B_{u l} J_{\nu_{0}}=\frac{g_{l}}{g_{u}} \mathrm{e}^{h \nu_{0} / k T_{\mathrm{rad}}} R_{l u}
\end{aligned}
$$

$B_{l u}$: Einstein coefficient for radiative excitation; $f_{l u}$: oscillator strength; $A_{u l}, B_{u l}$: Einstein coefficient for spontaneous and stimulated deexcitation, respectively; $\quad g_{l, u}$: statistical weights of the lower and upper level.

Non-equilibrium Hydrogen ionization (cont.)
The hydrogen bound-free excitations have a Kramer's absorption cross section:

$$
\sigma_{i c}(\nu)=\alpha_{0}\left(\frac{\nu_{0}}{\nu}\right)^{3}, \nu>\nu_{0}
$$

where α_{0} is the absorption cross-section at the edge frequency ν_{0}. In this case the radiative rate coefficients are

$$
\begin{aligned}
R_{i c} & =4 \pi \int_{\nu_{0}}^{\infty} \frac{\sigma_{i c}(\nu)}{h \nu} J_{\nu} \mathrm{d} \nu=\frac{8 \pi}{c^{2}} \alpha_{0} \nu_{0}^{3} \int_{\nu_{0}}^{\infty} \frac{1}{\nu} \frac{1}{\mathrm{e}^{h \nu / k T_{\mathrm{rad}}}-1} \mathrm{~d} \nu \\
& =\frac{8 \pi}{c^{2}} \alpha_{0} \nu_{0}^{3} \sum_{n=1}^{\infty} E_{1}\left[n \frac{h \nu_{0}}{k T_{\mathrm{rad}}}\right], \quad E_{1} \text { being the first exponential integral } \\
R_{c i} & =4 \pi\left[\frac{n_{i}}{n_{c}}\right]_{\mathrm{LTE}} \int_{\nu_{0}}^{\infty} \frac{\sigma_{i c}(\nu)}{h \nu}\left(\frac{2 h \nu^{3}}{c^{2}}+J_{\nu}\right) \mathrm{e}^{-h \nu / k T_{e}} \mathrm{~d} \nu \\
& =\frac{8 \pi}{c^{2}} \alpha_{0} \nu_{0}^{3}\left[\frac{n_{i}}{n_{c}}\right]_{\text {LTE }} \sum_{n=1}^{\infty} E_{1}\left[\left(n \frac{T_{e}}{T_{\mathrm{rad}}}+1\right) \frac{h \nu_{0}}{k T_{e}}\right] .
\end{aligned}
$$

Non-equilibrium Hydrogen ionization (cont.)

Effect of dynamic H-ionization in the upper part of a 2-D simulation. Left column: LTE ionization degree and electron density. Right column: Corresponding time-dependent NLTE quantities. Bottom left: Gas temperature, which is the same for the LTE and the time-dependent case.

From Leenaarts \& Wedemeyer-Böhm 2006.

$\S 13$ Chemical reaction network

For certain applications, e.g., the effect of CO in the solar atmosphere, an optional module for the treatment of a network of chemical reactions was added to the CO^{5} BOLD code. For further details see Wedemeyer-Böhm et al. (2005), A\&A 438, 1043 and Wedemeyer-Böhm \& Steffen (2007), A\&A 462, L31.

The operator splitting method is used in order to account for the time evolution of chemical species. In a first step the chemical species are advected together with all the other hydrodynamic quantities:

$$
\frac{\partial n_{i}}{\partial t}+\nabla \cdot\left(n_{i} \boldsymbol{v}\right)=0
$$

where n_{i} is the number density of a chemical species and \boldsymbol{v} the velocity of the hydrodynamical flow.

Chemical reaction network (cont.)

In a second step (between the hydro step and the radiation-transfer step), the change in number density due to chemical reactions is accounted for:

$$
\begin{aligned}
\left(\frac{\partial n_{i}}{\partial t}\right)_{\text {chem }}= & -n_{i} \sum_{j} k_{2, i j} n_{j} \\
& +\sum_{j} \sum_{l} k_{2, j l} n_{j} n_{l} \\
& -n_{j} \sum_{j} \sum_{l} k_{3, i j l} n_{j} n_{l} \\
& +\sum_{j} \sum_{l} \sum_{m} k_{3, j l m} n_{j} n_{l} n_{m}
\end{aligned}
$$

where n_{i} is the number densities of species i, which decreases or increases due to two-body reactions with rates $k_{2, i j}$ and $k_{2, j l}$, respectively. Three-body reactions are analogously accounted for by the third and fourth term with rates $k_{3, i j l}$ and $k_{3, j l m}$. It results in a (stiff!) system of of ordinary differential equations.

Chemical reaction network (cont.)
The rates have the basic form

$$
k=\alpha T_{300}^{\beta} \mathrm{e}^{-\gamma / T},
$$

where $T_{300}=T / 300 \mathrm{~K}$. For catalytic reactions the number density of a representative metal n_{M} enters: The rates have the basic form

$$
k=n_{\mathrm{M}} \alpha T_{300}^{\beta} \mathrm{e}^{-\gamma / T}
$$

The coefficients α, β, and γ are compiled in tables, e.g., in Wedemeyer-Böhm et al. (2005), A\&A 438, 1043

Chemical reaction network (cont.)

Chemical reaction network:
7 chemical species, $\mathrm{H}, \mathrm{H}_{2}$, $\mathrm{C}, \mathrm{O}, \mathrm{CO}, \mathrm{CH}, \mathrm{OH}$, plus a representative metal M and 27 chemical reactions. From Wedemeyer-Böhm et al. (2005), A\&A 438, 1043

Chemical reaction network (cont.)

Radiative cooling via CO lines:

- Two opacity bands:
1.) continuum band with Rosseland mean opacity κ_{R} without infrared.
2.) infrared band at $4.7 \mu \mathrm{~m}$ with Rosseland mean opacity plus CO line opacity, $\kappa_{\mathrm{R}}+\kappa_{C O}$.
- CO opacity calculated from (time dependent) CO number density.

Application examples:

- movie of CO number density in two-dimensional hydrodynamic solar convection.
- animation of "CO clouds" from a three-dimensional simulation.

References

Brandenburg, A., and Dobler, W.: 2002, Hydromagnetic turbulence in computer simulations, Comput. Phys. Comm. 147, 471-475
Calvo, F., Steiner, O., \& Freytag, B.: 2016, Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere, A\&A, 596, A43

Felipe, T., Khomenko, E., Collados, M.: 2010, Magneto-acoustic Waves in Sunspots: First Results From a New Three-dimensional Nonlinear Magnetohydrodynamic Code, ApJ 719, 357-377
Felker, K.G. and Stone, J.M.: 2018, A fourth-order accurate finite volume method for ideal MHD via upwind constrained transport, J. Comput. Phys. 375, 1365-1400
Freytag, B., Steffen, M., and Dorch, B.: 2002, Spots on the surface of Betelgeuse Results from new 3D stellar convection models, Astronomical Notes/AN 323, 213-219

Freytag, B., Steffen, M., Ludwig, H.-G., and Holweger, H.: 2004, Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere, A\&A 414, 1121-1137

References (cont.)

Freytag, B. et al.: 2008, CO ${ }^{5}$ BOLD user manual, http://www.astro.uu.se//bf/co5bold_main.html

Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Bhm, S., Schaffenberger, W., and Steiner, O.: 2012, Simulations of stellar convection with CO5BOLD, J. Comput. Phys. 231, 919-959
Fryxell, B., Olson, K., Ricker, P., Timmes, F.X. Zingale, M., Lamb, D.Q., Macneice, P., Rosner, R. Truran, J.W., and Tufo, H.: 2000, FLASH: an Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes, ApJ Suppl. Ser. 131, 273-334

Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., and Martínez-Sykora1, J.: 2011, The stellar atmosphere simulation code Bifrost: Code description and validation, A\&A 531, A154

References (cont.)

Hayek, W., Asplund, M., Carlsson, M., Trampedach, R., Collet, R., Gudiksen, Hansteen, V., and Leenaarts, J.: 2010, Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres: Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star, A\&A 517, A49

Hayes, J.C., Norman, M.L., Fiedler, R.A., Bordner, J.O., Li, P.S.; Clark, S.E., ud-Doula, A., Mac Low, M.-M.: 2006, Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS-MP, ApJ Suppl. Ser. 165, 188-228

Leenaarts, J. and Wedemeyer-Böhm, S.: 2006, Time-dependent hydrogen ionisation in 3D simulations of the solar chromosphere. Methods and first results, A\&A 460, 301-307

LeVeque, R.J., Mihalas, D., Dorfi, E.A., and Müller, E.: 1998, Computational Methods for Astrophysical Fluid Flow, O. Steiner \& A. Gautschy (eds.), Springer-Verlag, Berlin
Ludwig, H.-G.: 1992, Nichtgrauer Strahlungstransport in numerischen Simulationen stellarer Konvektion, Ph.D. thesis, Christian-Albrechts-Universität, Kiel

References (cont.)

Mandli K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: 2016, Clawpack: building an open source ecosystem for solving hyperbolic PDEs, PeerJ Computer Science 2:e68, https://doi.org/10.7717/peerj-cs. 68

Muthsam, H.J., Kupka, F., Löw-Baselli, B., Obertscheider, C., Langer, M., Lenz, P.: 2010, ANTARES - A Numerical Tool for Astrophysical RESearch with applications to solar granulation, New Astronomy 15, 460-475
Nordlund, Å: 1982, Numerical simulations of the solar granulation, A\&A 107, 1-10
Salhab, R.G., Steiner, O., Berdyugina, S.V., Freytag, B., Rajaguru, S.P., and Steffen, M.: 2018, Simulation of the small-scale magnetism in main sequence stellar atmospheres, A\&A 614, A78

Sollum, E.: 1999, Master thesis, University of Oslo, Norway
Steffen, M.: 2017, Radiation transport in CO5BOLD, Mem. Soc. Astr. Ital. 88, 22
Teyssier, R.: 2002, Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, A\&A 385, 337-364

References (cont.)

Vögler, A., Bruls, J.H.M.J., and Schüssler, M.: 2004, Approximations for non-grey radiative transfer in numerical simulations of the solar photosphere, A\&A 421, 741-754

Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F. Emonet, T., and Linde, T.: 2005, Simulations of magneto-convection in the solar photosphere: Equations, methods, and results of the MURaM code A\&A 429, 335-351

Wedemeyer-Böhm, S., Kamp, I., Bruls, J., and Freytag, B.: 2005, Carbon monoxide in the solar atmosphere. I. Numerical method and two-dimensional models, A\&A 438, 1043-1057

Wedemeyer-Böhm, S. and Steffen, M.: Carbon monoxide in the solar atmosphere. II. Radiative cooling by CO lines, A\&A 462, L31-L35
Wedemeyer-Böhm, S. and Steiner, O.: 2006, CO ${ }^{5}$ BOLD Workshop, http://folk.uio.no/svenwe/cws2006/index.html

Ziegler, U.: 2011, A semi-discrete central scheme for magnetohydrodynamics on orthogonal-curvilinear grids, J. Comput. Phys. 230, 1035-1063

Part IV: MHD simulations: Case studies

§ 14 Basic postdictions

Observation of the solar surface

Numerical simulation

Basic postdictions (cont.)

Center-to-limb intensity variation

Basic postdictions (cont.)

Synthetic Fe I spectral lines in comparison to the atlas.

§ 15 Postdiction: Stokes- V asymmetry

Apparent vertical magnetic flux density $B_{\mathrm{app}}^{\mathrm{L}}$ of the quiet Sun over a field of view of $302^{\prime \prime} \times 162^{\prime \prime}$ observed from the Hinode space observatory. The grey scale saturates at $\pm 50 \mathrm{Mx} \mathrm{cm}^{-2} .2048$ steps to 5 s .

[^0]Postdiction: Stokes- V asymmetry (cont.)

Stokes- V profiles across a magnetic element of the internetwork from the Hinode data.

$\delta A:=\frac{A_{b}-A_{r}}{A_{b}+A_{r}}$
$\operatorname{sign}(\delta A)=-\operatorname{sign}\left(\frac{\mathrm{d}|B|}{\mathrm{d} \tau} \cdot \frac{\mathrm{d} v(\tau)}{\mathrm{d} \tau}\right)$
Solanki \& Pahlke, 1988; Sanchez Almeida et al., 1989

Postdiction: Stokes- V asymmetry (cont.)

Columns a-c: observational data obtained with the spectro-polarimeter of Hinode/SOT. Columns d and f : synthetic data from the 3-D MHD simulation. Columns e and g : same as d and f but after application of the SOT-PSF to the synthetic intensity maps. Distance between tick marks is $0.5^{\prime \prime}$. From Rezaei, Steiner, Wedemeyer-Böhm et al. 2007, A\&A 476, L33

Postdiction: Stokes- V asymmetry (cont.)

Variation in δA across magnetic elements from the Hinode data (top row) and the simulation (bottom row).

Postdiction: Stokes- V asymmetry (cont.)

$$
\left.\begin{array}{r}
\frac{\mathrm{d}|B|}{\mathrm{d} \tau}<0 \\
\frac{\mathrm{~d} v(\tau)}{\mathrm{d} \tau}>0
\end{array}\right\} \Rightarrow \delta A>0
$$

Vertical cross section through the simulation box. Colour displays the logarithmic magnetic field strength, arrows the velocity field, black contours the electric current density normal to the plane. The white vertical lines indicate ranges of either positive or negative area asymmetry, δA.

§ 16 Postdiction: Stokes- V amplitude ratio

Continuum intensity at 630 nm over a field of view of $302^{\prime \prime} \times 162^{\prime \prime}$ recorded with Hinode/SOT/SP. 2048 slit positions. From Lites et. al. 2008, ApJ 672, 1237

Postdiction: Stokes- V amplitude ratio (cont.)

Apparent vertical magnetic flux density, $B_{\mathrm{app}}^{\mathrm{L}}$, of the quiet Sun over a field of view of $302^{\prime \prime} \times 162^{\prime \prime} .2048$ steps to 4.8 s . Maps of Fe। 630.15 and 630.25 nm .

From Lites et. al. 2008, ApJ 672, 1237

Postdiction: Stokes- V amplitude ratio (cont.) observational data

Scatter plot of the blue lobe Stokes- V amplitudes of the $6302.5 \AA$ line vs. the $6301.5 \AA$ line as observed with Hinode/SOT/SP. The dashed line is the regression relation expected for weak magnetic fields. We identify two populations of points. From Stenflo (2011) A\&A 529 A42. \Rightarrow Section at 1\%

Postdiction: Stokes- V amplitude ratio (cont.):

simulation data

Scatter plot of the Stokes- V line ratio from the simulation. Left: full resolution;
Right: degraded with the SOT/SP point spread function. From Steiner \& Rezaei (2012).

Scatter plot of the Stokes- V line ratio from a mixed polarity simulation.
"It is nice to know that the computer understands the problem, but I would like to understand it too."

Attributed to E.P. Wigner

meaning:
"It is nice to know that our simulations reproduce the observations, but what can we learn from it?"

Postdiction: Stokes- V amplitude ratio (cont.)

Conclusion: The two populations can be explained in terms of weak (hectogauss) magnetic fields. Numerical simulations are indispensable for the correct interpretation.

Maurizio Nannucci, Neon installation in the court of the Museo Novecento, Florence

Postdiction: Stokes- V amplitude ratio (cont.)

Case studies I and II are typical examples of post diction: Something that was observed got reproduced by simulations, which helped us to better understand and interpret the observation.

The next paragraph treats an example of prediction.

§ 17 Prediction: Non-magnetic bright points

Bolometric intensity maps

With magnetic fields:
Magnetohydrodynamic simulation

Without magnetic fields:
Hydrodynamic simulation

Courtesy,
F. Calvo

Prediction: Non-magnetic bright points (cont.)
Slices across a non-magnetic bright point (nMBP0868)

Emergent intensity I (top left), temperature T (bottom), density $\log (\rho)$ (right)

Prediction: Non-magnetic bright points (cont.)
Slices across a non-magnetic bright point (nMBP0868)

Emergent intensity I (top left), temperature T (bottom), density $\log (\rho)$ (right)

Prediction: Non-magnetic bright points (cont.)

Density (blue: low, red: high) and velocity field in an horizontal plane, $150[\mathrm{~km}]$ below $\langle\tau\rangle=1$
non-magnetic bright points (nMBPs) are locations with:

- swirling motion (but $\approx 150[\mathrm{~km}]$ below $\tau=1$ there are often swirls that do not produce nMBPs);
- Iow density (but a density deficiency alone does not warrant nMBP's);
- high intensity contrast (but a local intensity peak does not need to be a nMBP).
\qquad

Prediction: Non-magnetic bright points (cont.)

Magnetic flux sheet. Depression due to magnetic pressure.

Swirl. Depression due to centrifugal force.

In both cases is the 'hot wall effect' responsible for the enhanced radiation from the depression.

Prediction: Non-magnetic bright points (cont.)

$\underline{\text { Reduction to an analytical toy model }}$
Starting from the momentum equation

$$
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}+\frac{1}{\rho} \boldsymbol{\nabla} P+\boldsymbol{g}=0
$$

we assume

1. nMBPs are long-lived and stable so that the velocity field can be considered stationary;
2. They have cylindrical symmetry;
3. Their velocity field has a non-vanishing azimuthal component;
4. They extend in the vertical direction and their shape does not depend on depth.

Because of 2., the Euler momentum equation can be written in cylindrical coordinates.

Prediction: Non-magnetic bright points (cont.)

Reduction to an analytical toy model
The advection term is then given by

$$
(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}=\left[(\boldsymbol{v} \cdot \nabla) v_{r}-\frac{v_{\theta}^{2}}{r}\right] \hat{\boldsymbol{r}}+\left[(\boldsymbol{v} \cdot \boldsymbol{\nabla}) v_{\theta}+\frac{v_{\theta} v_{r}}{r}\right] \hat{\boldsymbol{\theta}}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) v_{z} \hat{\boldsymbol{z}}
$$

where the directional derivative is

$$
\boldsymbol{v} \cdot \nabla=v_{r} \partial_{r}+\frac{v_{\theta}}{r} \partial_{\theta}+v_{z} \partial_{z}
$$

The simplest field satisfying the conditions 1-4 is $\boldsymbol{v}=v_{\theta}(r) \hat{\boldsymbol{\theta}}$. Inserting it into the
Euler momentum equation and projecting it into the horizontal plane yields

$$
\frac{\partial P}{\partial r}-\rho \frac{v_{\theta}^{2}}{r}=0
$$

The pressure gradient is provided by the centripetal force.

Prediction: Non-magnetic bright points (cont.)
Reduction to an analytical toy model
One can then estimate the magnitude of v_{θ}. With

$$
\begin{aligned}
\frac{P_{\mathrm{ext}}-P_{\mathrm{int}}}{\rho_{\mathrm{ext}}} & \approx v_{\theta}^{2}, \quad \frac{\rho_{\mathrm{int}}-\rho_{\mathrm{ext}}}{\rho_{\mathrm{ext}}} \equiv C_{\rho}, \quad \frac{T_{\mathrm{int}}-T_{\mathrm{ext}}}{T_{\mathrm{ext}}} \equiv C_{T} \\
\frac{P_{\mathrm{ext}}}{\rho_{\mathrm{ext}}} & \approx R_{\mathrm{s}} T_{\mathrm{ext}}, \quad T_{\mathrm{ext}}
\end{aligned}
$$

one obtains with $C_{\rho} \approx-0.5$ and $C_{T} \approx 0$

$$
v_{\theta}=\sqrt{R_{\mathrm{s}} T_{\mathrm{eff}}\left[1-\left(1+C_{\rho}\right)\left(1+C_{T}\right)\right]} \approx \sqrt{\frac{R_{\mathrm{s}} T_{\mathrm{eff}}}{2}}=4.4 \mathrm{~km} \mathrm{~s}^{-1}
$$

while the maximum azimuthal velocities in the simulation are $v_{\theta}^{\max } \approx 6 \mathrm{kms}^{-1}$.

Prediction: Non-magnetic bright points (cont.)

Intensity contrast across a non-magnetig bright point as observed with different telescopes.
From Calvo et al. (2016).

§ 18 Prediction: Stellar photometric variability

- "Box in a star" simulations of the surface layers of four spectral types;
- Each simulation is run twice: with and without magnetic fields;
- Initial vertical homogeneous field of 50 G and 100 G ;
- Multi-group radiation transfer using 5 opacity bins;
- Numerical, non-stationary, three-dimensional radiation magnetohydrodynamics using the $C O^{5} B O L D$ code .

Prediction: Stellar photometric variability (cont.)

Prediction: Stellar photometric variability (cont.)

Prediction: Stellar photometric variability (cont.)

Magnetic flux concentration
(green) with optical surface $\tau_{c}=1$ (blue), and "Wilson depression" WD.

Conclusion: $B_{z}\left(\tau_{\mathrm{R}}=1\right) \approx 1550[\mathrm{G}]$ is fairly independent of spectral type

Prediction: Stellar photometric variability (cont.)
Magnetic flux sheath in a

K-type atmosphere
Small depression of the $\tau_{c}=1$ surface
\Rightarrow weak hot-wall effect.
Weak evacuation
\Rightarrow faint facular granules.

G-type atmosphere.
Large depression of the $\tau_{c}=1$ surface
\Rightarrow strong hot-wall effect.
Strong evacuation
\Rightarrow bright facular granules.

Prediction: Stellar photometric variability (cont.)

	spectral type	K 8 V	K 2 V	G 2 V	F 5 V
	initial $B_{z}[\mathrm{G}]$	50	50	50	50
25	$\delta_{I_{\mathrm{bol}}}[\%]$	0.25 ± 0.2	0.68 ± 0.9	0.88 ± 1.1	0.53 ± 0.8
26	$\delta_{F_{\mathrm{bol}}}[\%]$	0.39 ± 0.2	0.86 ± 0.9	1.15 ± 1.1	0.95 ± 0.8
27	$\delta_{F_{\mathrm{bol}}}-\delta_{I_{\mathrm{bol}}}[\%]$	0.14	0.18	0.27	0.42
30	$\mathrm{WD}_{\mathrm{w}}[\mathrm{km}]$	60 ± 14	139 ± 34	232 ± 65	388 ± 113
31	$\mathrm{WD}_{\mathrm{w}} / H_{p}\left(\tau_{R}=1\right)[-]$	0.7 ± 0.1	1.3 ± 0.3	1.4 ± 0.3	2.6 ± 0.7
15	$\rho_{\mathrm{int}} / \rho_{\mathrm{ext}}\left(z_{0}\right)[-]$	0.75 ± 0.02	0.54 ± 0.03	0.46 ± 0.04	0.36 ± 0.05
16	$\beta\left(z_{0}\right)[-]$	2.7 ± 0.2	1.3 ± 0.1	0.74 ± 0.1	0.38 ± 0.1

Radiative surplus of the magnetic over the field-free models, weighted mean Wilson depression, and degree of evacuation of the flux concentrations.

Prediction: Stellar photometric variability (cont.)

Conclusion: For spectral types K8V to F5V, the small-scale magnetic fields produce a surplus in radiative intensity and flux. It is most pronounced for G-type and early K-type stars.

In the last two examples, numerical simulations served to make a prediction. Because the simulations faithfully reproduce observed features like granules, the granular rms intensity contrast, or the shape of spectral lines, we can with some confidence predict new features, like swirling non-magnetic bright points, to really exist on the Sun. The complex structure of the non-magnetic bright points found in the simulations got reduced to an analytical toy model.

The next paragraph treats an example of virtual experimentation. Since we cannot take the Sun in the laboratory and since we cannot travel to the Sun and cary out experiments in situ, we reconstruct it in the computer for carrying out experiments.

§ 19 Experiment: MHD wave conversion

Temperature (colors), velocity (arrows), and optical depth $\tau_{c}=1$ (dashed curve).

Magnetic field strength (gray scales), level where $c_{s}=c_{A}$ (white contour), locations of local wave excitation (crosses).

Movies of wave excitation at $\times_{\mathrm{i}}, \times_{\mathrm{ii}}, \times_{\mathrm{iii}}$, and along the lower boundary.
From Nutto et al., 2012 A\&A 538, A79.

Time instant of a spherical, fast acoustic wave, initiated by a local pressure perturbation in the convection zone. When the wave encounters the low beta magnetic flux concentration in the photosphere, it partially converts into a fast magnetic mode, which shows the typical "faning out" already encountered in the 2-D simulation. Colors show absolute velocity perturbation. Courtesy Christian Nutto, KIS.

§ 19.1 Magnetic halos and shadows

Left: FOV of $6.6^{\prime \prime} \times 6.6^{\prime \prime}$ in white light. Right: Magnetic field strength at $\left\langle\tau_{c}\right\rangle=1$. Contours: Equipartition level where $c_{s}=c_{A}$. From Nutto et al. 2012, A\&A 542, L30.

Magnetic halos and shadows (cont.)

Power maps of the vertical velocity perturbations, δv_{z}, taken at a) $\tau_{c}=8 \cdot 10^{-4}$ and b) $\tau_{c}=6.7 \cdot 10^{-5}$. The white contours shows the equipartition level $c_{s}=c_{A}$. The ellipses mark regions where the magnetic shadow can be identified. Note suppression of power in the region between the large and the small ellipses. From Nutto et al. 2012. ——toc-ref

Magnetic halos and shadows (cont.)
up to 1.2 mHz

a) Broadband continuum at 710 nm . e) Line core intensity of Call 854.2 nm . b)-d) and f)-h)

Logarithm of the Fourier Doppler-velocity power averaged over the indicated range of frequencies of the photospheric line Fe I 709.0 nm (b)-d)) and the chromospheric line Ca II 854.2 nm (f)-h)). From Vecchio, Cauzzi, Reardon et al. (2007), A\&A 461, L1. obtained with IBIS at DST.

Magnetic halos and shadows (cont.)

Sketch of the three different magneto-acoustic modes that lead to the phenomenon of the magnetic shadow and the magnetic halo.

References

Calvo, F., Steiner, O., \& Freytag, B.: 2016, Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere, A\&A 596, A43

Lites, B. W., Kubo, M., Socas-Navarro, H., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Ichimoto, K., Katsukawa, Y., Tsuneta, S., Suematsu, Y., Shimizu, T., and Nagata, S.: 2008, The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter. ApJ 672, 1237-1253

Komm, R., De Moortel, I., Fan, Y., Ilonidis, S. and Steiner, O.: 2015, Sub-photosphere to Solar Atmosphere Connection, in Helioseismology and Dynamics of the Solar Interior, J. Len Culhane et al. (eds.), Space Science Reviews 196, 167-199

Neckel, H. and Labs, D.: 1994, Solar Limb Darkening 1986-1990 ($\lambda \lambda 303$ to 1099 nm), Sol. Phys. 153, 91-114

Nutto, C., Steiner, O., \& Roth, M.: 2012, Revealing the nature of magnetic shadows with numerical 3D-MHD simulations, A\&A, 542, L30

Nutto, C., Steiner, O., Schaffenberger, W., \& Roth, M.: 2012, Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere, A\&A 538, A79

Rezaei, R., Steiner, O., Wedemeyer-Böhm, Schlichenmaier, R., Schmidt, W., and Lites, B.W.: 2008, Hinode observations reveal boundary layers of magnetic elements in the solar photosphere, A\&A 476, L33-L36
Salhab, R.G., Steiner, O., Berdyugina, S.V., Freytag, B., Rajaguru, S.P., and Steffen, M.: 2018, Simulation of the small-scale magnetism in main sequence stellar atmospheres, A\&A 614, A78

Sánchez Almeida, J., Collados, M., and del Toro Iniesta, J.C.: 1989, On the generation of the net circular polarization observed in solar faculae, A\&A 222, 311

Solanki, S.K. and Pahlke, K.D.: 1988, Can stationary velocity fields explain the Stokes V asymmetry observed in solar magnetic elements?, A\&A 201, 143
Steiner, O. \& Rezaei, R.: 2012, Recent Advances in the Exploration of the Small-Scale Structure of the Quiet Solar Atmosphere: Vortex Flows, the Horizontal Magnetic Field, and the Stokes-V Line-Ratio Method, in L. Golub, I. De Moortel, and T. Shimizu (eds.), Hinode 5: Exploring the Active Sun, ASP Conf. Ser. 456, p. 3-32.
Stenflo, J.O.: 2010, Distribution functions for magnetic fields on the quiet Sun, A\&A 517, A37
Stenflo, J.O.: 2011, Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun, A\&A 529, A42

Vecchio, A., Cauzzi, G., Reardon, K. P., Janssen, K., \& Rimmele, T.: 2007, Solar atmospheric oscillations and the chromospheric magnetic topology, A\&A 461, L1

[^0]: From Lites et. al. 2008, ApJ 672, 1237

