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Part I:

Fundamentals of the numerics of

hyperbolic partial differential equations
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§ 1 Linear and non-linear advection equations

We start with the continuity equation as the reference equation for advection:

∂ρ

∂t
+∇ · (ρv) = 0 ,

∂

∂t

∫

V

ρdV = −

∮

∂V

(ρv) · nda

in 1-D
∂ρ

∂t
+

∂

∂x
(ρu) = 0 .

With u = const. (the advection velocity) we get the linear advection equation

∂ρ

∂t
+ u

∂ρ

∂x
= 0 .

Its solution is

ρ(x, t) = ρ0(x− ut) .
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Linear and non-linear advection equations (cont.)

The initial density profile is simply moved (advected) with velocity u.

0

ρ (x,t)

(x)ρ 
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Linear and non-linear advection equations (cont.)

The initial density profile is simply moved (advected) with velocity u.

0

ρ (x,t)

(x)ρ 

Representation on a discrete numerical Eulerian grid:

∆ x

∆
t

t

n+1

N

1
n

(x,t+  t)ρ 
(x,t)ρ 

∆

j−1 j  j+1
x

J1
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Linear and non-linear advection equations (cont.)

∂ρ

∂t
+ u

∂ρ

∂x
= 0 =⇒

∂ρ

∂t
+ u

ρj − ρj−1

∆x
= 0

Taylor expansion:

ρj−1 = ρj −
∂ρ

∂x

∣
∣
∣
∣
j

∆x+
1

2

∂2ρ

∂x2

∣
∣
∣
∣
j

∆x2 −
1

6

∂3ρ

∂x3

∣
∣
∣
∣
j

∆x3 + . . .

Substitution:

∂ρ

∂t
+ u

∂ρ

∂x

∣
∣
∣
∣
j

︸ ︷︷ ︸

original l.h.s.

−

diffusion

coefficient
︷ ︸︸ ︷

1

2
∆x u

∂2ρ

∂x2

∣
∣
∣
∣
j

︸ ︷︷ ︸

diffusive term

+
1

6
u∆x2 ∂3ρ

∂x3

∣
∣
∣
∣
j

− . . .

︸ ︷︷ ︸

higher order terms

= 0

The diffusion term looks like a viscous term with viscosity (∆x/2)u.
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Linear and non-linear advection equations (cont.)

∂ρ

∂t
+ u

∂ρ

∂x
= 0 =⇒

∂ρ

∂t
+ u

ρj − ρj−1

∆x
= 0

Taylor expansion:

ρj−1 = ρj −
∂ρ

∂x

∣
∣
∣
∣
j

∆x+
1

2

∂2ρ

∂x2

∣
∣
∣
∣
j

∆x2 −
1

6

∂3ρ

∂x3

∣
∣
∣
∣
j

∆x3 + . . .

Substitution:

∂ρ

∂t
+ u

∂ρ

∂x

∣
∣
∣
∣
j

︸ ︷︷ ︸

original l.h.s.

−

diffusion

coefficient
︷ ︸︸ ︷

1

2
∆x u

∂2ρ

∂x2

∣
∣
∣
∣
j

︸ ︷︷ ︸

diffusive term

+
1

6
u∆x2 ∂3ρ

∂x3

∣
∣
∣
∣
j

− . . .

︸ ︷︷ ︸

higher order terms

= 0

The diffusion term looks like a viscous term with viscosity (∆x/2)u.

Lesson: The discrete scheme does not solve the original equation but the original

equation with an inherent numerical diffusion term added.

toc ref



Linear and non-linear advection equations (cont.)

It is remarkable that Eulerian numerical schemes have generally difficulties to solve the

linear advection equation accurately. Some amount of diffusion is unavoidable.

From Oran & Boris (1987)
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Linear and non-linear advection equations (cont.)

We next consider the momentum equation

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p)− ερ

∂2u

∂x2
= 0 ,

and assume p = 0:

u
∂ρ

∂t
+ ρ

∂u

∂t
+ u2 ∂ρ

∂x
+ ρ2u

∂u

∂x
− ερ

∂2u

∂x2
= 0 .

Using the continuity equation, the first term can be written as:

u
∂ρ

∂t
= −u

∂

∂x
(uρ) = −u2 ∂ρ

∂x
− uρ

∂u

∂x

⇒ ρ
∂u

∂t
+ ρu

∂u

∂x
− ρε

∂2u

∂x2
= 0 .

Division by ρ and reordering terms leads to:
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Linear and non-linear advection equations (cont.)

Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2

and the inviscid Burgers’ equation

ut + uux = 0
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Linear and non-linear advection equations (cont.)

Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2

and the inviscid Burgers’ equation

ut + uux = 0

(x,t)u

u(x,0)
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Linear and non-linear advection equations (cont.)

Solutions to the inviscid Burgers equation ut + uux = 0:

(x,0)

u

u

(x,t)

Solutions to the Burgers equation ut + uux = εuxx:

ε = 0.01

limiting solution
as 

ε = 0.005

ε → 0
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Linear and non-linear advection equations (cont.)

Consider the inviscid Burgers equation ut + uux = 0 with the initial data

u0 =







1 for x ≤ 0

0 for x > 0

u

x

0

and construct a straightforward discretization:

Un+1
j − Un

j

k
+ Un

j

(
Un

j − Un
j−1

h

)

= 0 ,

which is an ‘upwind” or “donor cell” scheme. How does this scheme handle the

discontinuity of the initial data ?
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Linear and non-linear advection equations (cont.)

First we rewrite the scheme in explicite form:

Un+1
j = Un

j −
k

h
Un

j

(
Un

j − Un
j−1

)
.

Next we compute the first time step:

for x < 0 : U1
j = 1−

k

h
1 (1− 1) = 1 ,

for x > 0 : U1
j = 0−

k

h
0 (0− 0) = 0 ,

for Uj−1 = 1 and Uj = 0 : U1
j = 0−

k

h
0 (0− 1) = 0 .
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Linear and non-linear advection equations (cont.)

First we rewrite the scheme in explicite form:

Un+1
j = Un

j −
k

h
Un

j

(
Un

j − Un
j−1

)
.

Next we compute the first time step:

for x < 0 : U1
j = 1−

k

h
1 (1− 1) = 1 ,

for x > 0 : U1
j = 0−

k

h
0 (0− 0) = 0 ,

for Uj−1 = 1 and Uj = 0 : U1
j = 0−

k

h
0 (0− 1) = 0 .

⇒ After one time step we recover the initial data again!

Whatever step size h and k we choose, the shock front stays at the same position.
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Linear and non-linear advection equations (cont.)

From R.J. LeVeque (1992)

True (solid curve) and computed (dotted curve)

solution to Burgers’ equation with adjacent initial

data and using the upwind scheme. Note that

the shock speed is wrong.

u0 =







1.2 for x ≤ 0

0.4 for x > 0
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§ 2 Conservative methods

A good way to obtain conservation law form ist to start discretization from the

conservative form of the PDE.

For example in case of the inviscid Burgers equation:

quasi linear form : ut + uux = 0 ,

conservative form : ut +
(

1
2u

2
)

x
= 0 .

Using the same upwind discretization as before but starting from the

conservative form of the PDE we obtain:

Un+1
j − Un

j

k
+

1

h

[

1

2
(Un

j )
2 −

1

2
(Un

j−1)
2

]

= 0 .
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Conservative methods (cont.)

The explicit form is

Un+1
j = Un

j −
k

h

[

1

2
(Un

j )
2 −

1

2
(Un

j−1)
2

]

= 0 ,

which is distinctly different from the difference equation that we had before:

Un+1
j = Un

j −
k

h
Un
j

(

Un
j − Un

j−1

)

.

The first equation has the form

Un+1
j = Un

j −
k

h

[

F (Un
j )− F (Un

j−1)
]

,

hence, it is in conservation law form according to the definition. Applying it to

the same initial data as before produces the correct solution with the correct

shock speed.
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Conservative methods (cont.)

From R.J. LeVeque (1992)

True (solid curve) and computed (dotted curve)

solution to Burgers’ equation with adjacent initial

data and using the conservative upwind scheme.

Note that the shock speed is correct .

u0 =







1.2 for x ≤ 0

0.4 for x > 0
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Conservative methods (cont.)

Def.: A scheme is in conservation law form if it has the form

Un+1
j = Un

j −
k

h

[

F (Un
j−p, U

n
j−p+1, . . . , U

n
j+q)

−F (Un
j−p−1, U

n
j−p, . . . , U

n
j+q−1)

]

.

F is called the numerical flux function .

Lesson: When dealing with shock waves, better use a scheme of

conservation law form.
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Conservative methods (cont.)

A scheme in conservation law form

Un+1
j = Un

j −
k

h

[

F (Un
j−p, U

n
j−p+1, . . . , U

n
j+q)

−F (Un
j−p−1, U

n
j−p, . . . , U

n
j+q−1)

]

is consistent with the conservative PDE

∂u

∂t
+

∂

∂x
(f(u))

if
F(u,u,. . . ,u) = f(u)

and there exists a K such that

|F (Uj−p, . . . , Uj+q)− f(u)| ≤ K max
−p≤i≤q

|Uj+1 − u| .
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Conservative methods (cont.)

Theorem of Lax and Wendroff (1960)

Consider a sequence of grids, indexed by l = 1, 2, . . . with mesh pa-

rameters kl, hl → 0 as l → ∞. Let Ul(x, t) denote the numerical

solution computed with a consistent and conservative method on the lth

grid. Suppose that Ul converges
∗

to a function u as l → ∞.

Then u(x, t) is a weak solution of the conservation law .

∗
Convergence in the following sense:

Over every bounded set Ω = [a, b]× [0, T ]

∫ T

0

∫ b

a

|Ul(x, t)− u(x, t)|dx dt → 0 as l → ∞

and TV(U( . , t)) < R 0 ≤ t ≤ T, l = 1, 2, . . .

where TV(v) = sup
∑N

j=1 |v(ξj)− v(ξj−1)|
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Conservative methods (cont.)

Lesson: C
3

: Conservation and consistency leads to convergence. Theorem of

Lax and Wendroff (1960).
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§ 3 Conservation laws – finite volumes

Consider the continuity equation:

ρt +∇ · (ρu) = 0 . (1)

Integration over a finite volume, V , and time period, T , leads to the integral

form of this equation:

∫

V

ρ(T,x)dV −

∫

V

ρ(0,x)dV = −

∫ T

0

∮

∂V

(ρu) · ndsdt (2)

Solutions to Eq. (2) are called weak solutions to the partial differential

equation, Eq. (1). Additionally to the solutions of Eq. (1), the set of solutions to

Eq. (2) encompasses discontinuous solutions, because no derivatives appear

in Eq. (2). Discontinuous solutions to the Euler equations represent shock

fronts of the real world.
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Conservation laws – finite volumes (cont.)

Consider the mass conservation in a one-dimensional finite tube element:

2

��
�
�
�
�

��
�
�
�
�

��
��

vρm

A

∆x

vρ 1

m(t+∆t) = m(t) + 〈ρv〉1A∆t− 〈ρv〉2A∆t (3)

〈ρ〉(t+∆t) = 〈ρ〉(t)−
∆t

∆x
(〈ρv〉2 − 〈ρv〉1) (4)

Eq. (4) has the form of a conservative finite volume scheme.

in the limit of ∆x → 0 and ∆t → 0
∂ρ

∂t
=

∂(ρv)

∂x
But Eq. (3) is identical to the integral form Eq. (2):

∫

V

ρ(T,x)dV −

∫

V

ρ(0,x)dV = −

∫ T

0

∮

∂V

(ρu) · n ds dt
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Conservation laws – finite volumes (cont.)

The conservative, finite volume formulation has three highly desirable properties:

– Conserved quantities (mass, momentum, energy) remain accurately conserved

– Discontinuous solutions are include by solving the integral form of the partial

differential equation

– It fulfills one of two requirements of the theorem of Lax and Wendroff (1960) that

says:

The approximate solution that is computed with a consistent and conservative

scheme converges to a weak solution of the conservation law.
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Conservation laws – finite volumes (cont.)

Euler’s equation in one dimension is given by

qt + f(q)x = 0 , q
n+1
i = q

n
i +

∆t

∆x
[fi−1/2 − fi+1/2] ,

where

q =







ρ

ρu

E







f(q) =







ρu

ρu2 + p

u(E + p)







In 3-D we have

qt + f(q)x + g(q)y + h(q)z = 0 ,

with

q =



















ρ

ρu

ρv

ρw

E



















f(q) =



















ρu

ρu2 + p

ρuv

ρuw

u(E + p)



















· · ·
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§ 4 Riemann solvers

A conservative finite volume scheme is an exact representation of the integral

form of the partial differential equation describing the conservation law. The

problem consists in computing the correct flux function f(q), i.e., 〈ρv〉 in the

case of the continuity equation.

It turns out that these fluxes can be computed exactly .
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Riemann solvers (cont.)

Idea of S.K. Godunov (1959): Piecewise constant reconstruction with

discontinuities at cell interfaces

q

x

q

x

q

x xi i+1

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l

p

ρ

x

x

x

v

t 1

ρ

l

p

p

v

*

vr

l

*

r

v

l

l
ρ*

ρ*
r ρ

r

p
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l

p

ρ

x

x

x

v

t 1

ρ

l

p

p

v

*

vr

l

*

r

v

l

l
ρ*

ρ*
r ρ

r

p

∆

∆

q
l

t

t

0

0 x

q

x

r

q*
l q*

r
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l

p

ρ

x

x

x

v

t 1

ρ

l

p

p

v

*

vr

l

*

r

v

l

l
ρ*

ρ*
r ρ

r

p

∆

∆

q
l

t

t

0

0 x

q

x

r

q*
l q*

r

q0

q  = q
0 r

q  = q
0

q  = q
0

q  = q
0 lrfl

**q  = q
0 r
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§ 5 Explicit vs implicit and the CFL condition

Let’s go back to the linear advection equation

∂ρ

∂t
+

∂(uρ)

∂x
= 0

with constant velocity u. The straightforward upwind differentiation is

ρn+1
j − ρnj

k
+

uρnj − uρnj−1

h
= 0 ,

where k = ∆t and h = ∆x. Next, we keep ρ at the new time step, n+ 1 on the left

hand side and express it in terms of the known densities at the old time step n:

ρn+1
j = ρnj −

k

h
u
(
ρnj − ρnj−1

)
.

This is called an explicit scheme.
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Explicit vs implicit and the CFL condition (cont.)

For an explicit scheme, the time step k is restricted by the CFL-condition

(Courant-Friedrichs-Lewy)

C =
uk

h
< 1

Typically, u is the speed of sound, or the Alfvén speed, which both may

become very large, hence, the time step k must be very small, which

drastically increases the computation costs.
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Explicit vs implicit and the CFL condition (cont.)

A way around the CFL bottleneck provides the implicit scheme. We still use the upwind

differentiation but now in terms of the quantities at the new time step n+ 1:

ρn+1
j − ρnj

k
+

uρn+1
j − uρn+1

j−1

h
= 0 ,

Keeping all quantities at time n+ 1 on the left hand side, we obtain

ρn+1
j −

k

h
uρn+1

j−1 +
k

h
uρn+1

j = ρnj , =⇒ ρn+1
j (1 + C)− Cρn+1

j−1 = ρnj ,

which leads to the algebraic system of equations













(C + 1) 0 0 · · · 0 0 −C

−C (1 + C) 0 · · · 0 0 0

0 −C (1 + C) · · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · 0 −C (1 + C)



























ρn+1
1

ρn+1
2

ρn+1
3

.

.

.

ρn+1
N














=














ρn1

ρn2

ρn3
.
.
.

ρnN














,
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Explicit vs implicit and the CFL condition (cont.)

Typically, an implicit scheme is not subject to the CFL restriction. However, the

time step should not be arbitrarily large to avoid large discretization

(dispersion) errors.
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Part II: Aspects of computational astrophysics
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§ 6 The role of computer simulations in astrophysics

Historical Perspective:

- 1950’s and 1960’s: Stellar evolution calculations (Martin Schwarzshild in the U.S. and

Rudolph Kippenhahn in Göttingen, Germany). At that time computers were viewed

as tools for the numerical integration rather than as a tool for experimentation.

Evolution of a 5 M⊙ star in the HRD

Kippenhahn et al. (1965, Zeitschrift für Astrophysik)
Rudolph Kippenhahn
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The role of computer simulations in astrophysics (cont.)

- 1960’s: N-body stellar dynamics simulations (e.g. tidal interaction of galaxies) and

hydrodynamical systems (e.g. core collapse supernovae). Notion of computational

astrophysics as experimental astronomy .

The antenna nebula NGC

4038/4039 evolved from a

collision of two similarly sized

spiral galaxies. Left: Observed

present state. Right: Present

state from a computer simula-

tion of the complete collision

(www.ifa.hawaii.edu/ b̃arnes).

These simulations are generally motivated by the question “What happens if?” more

so than “What is the solution to these equations?”.
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The role of computer simulations in astrophysics (cont.)

Computational astrophysics is the experimentation with astrophysical objects in

a virtual (numerical) laboratory , comparable to the manipulation with real probes

in classical physics experiments.
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The role of computer simulations in astrophysics (cont.)

Role of Computational astrophysics:

Observational
Astronomy

Theoretical
Astrophysics

Computational
Astrophysics

postdiction
prediction

validation formulation
analytical test cases

toy models

realization
experiments

observations

hypothesis

Adapted from M. Norman (1997)
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The role of computer simulations in astrophysics (cont.)

Simulations tend to model a time dependent physical system with some degree of

realism. Usually, simulated systems have no simple closed form analytic solutions.

Otherwise, one rather talks of modeling.

Realistic simulations produce observable quantities like intensity maps or polarimetric

maps that look like corresponding actual observations, so called virtual or synthetic

observations. Typically, a realistic solar simulation uses a realistic equation of state that

takes ionization and the composition of the solar plasma into account and it carries out

radiation transfer with actual opacities as occurring in the solar plasma.
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The role of computer simulations in astrophysics (cont.)

Progress in computational astrophysics:

resolution

low−res

multi−physics

mono−physics

1−D
2−D

3−D
4−D

high−res

dimensionality

physical

ensembles

complexity spatio−temporal

Adapted from M. Norman (1997)
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Ostriker, J.P.: 2000, Historical Reflection on the Role of Numerical Modeling in

Astrophysics, Reviews in Modern Astronomy 13, 1-11
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Part III: Concrete implementations
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§ 7 Computer Codes

The following is a non-exhaustive, arbitrarily selected list of codes that may or may not

be suitable for serving your needs. Details are without guarantee.

acronym AMR-VAC

name Versatile Advection Code PENCIL NIRVANA

web page http://amrvac.org/doc-contents.html http://www.nordita.org/software/pencil-code/ http://nirvana-code.aip.de/

principal authors Gábor Tóth / Ronny Keppens Axel Brandenburg / Wolfgang Dobler Udo Ziegler

language dimension independent notation,

(convertible to FORTRAN via VAC

Preprocessor)

FORTRAN C

MHD yes yes yes

radiative transfer no yes no

parallelization HPF, MPI, OpenMP MPI MPI

grid structured grid; adaptive/AMR Cartesian; adaptive/static Cartesina; cylidrical; spherical; adap-

tive/AMR

comments: The code features a variety of

numerical methods for the advection

step including TVD schemes and

Riemann solvers; AMR-VAC is a

version of VAC with automatic adaptive

mesh refinement, AMR.

Code uses a high-order fnite-difference

scheme; primarily designed to deal with

weakly compressible turbulent flows.

Godunov-type central scheme;

piecewise linear TVD reconstruction;

flux-CT scheme; dual energy

formalism.

References: — https://arxiv.org/abs/astro-ph/0111569 https://www.sciencedirect.com/science/article/

pii/S0021999110005784?via%3Dihub
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Computer Codes (cont.)

acronym CO5BOLD MURaM

name Conservative Code for the

Computation of Compressible

Convection in a Box of L Dimensions

MPS/University of Chicago Radiative

MHD

Bifrost

web page http://www.astro.uu.se/˜bf/co5bold main.html https://www2.mps.mpg.de/projects/

solar-mhd/muram site/index.html

—

principal author Bernd Freytag Alexander Vögler / Matthias Rempel Mats Carlsson & Boris Gudiksen

language FORTRAN — C

MHD yes yes yes

radiative transfer yes/non-grey yes/non-grey yes/non-grey

parallelization OpenMP MPI MPI

grid Cartesian; adaptive/static Cartesian; adaptive/static Cartesian, adaptive/static

comments: Riemann solver based code; realistic

EOS and opacities; chemical reaction

network; dynamic hydrogen ionization.

Fourth-order accurate; explicit finite

differences TVD scheme; realistic EOS

and opacities; includes coronal physics

Staggered grid with 6th order

differential operators. Realistic EOS

and opacities; Spitzer heat conduction;

dynamic H and He ionization, specia-

lized to incl, chromosphere & corona.

References: https://arxiv.org/abs/1110.6844 https://www.aanda.org/articles/

aa/pdf/2005/01/aa1507.pdf

https://arxiv.org/abs/1105.6306

acronym Mancha ANTARES CLAWPACK

name Multi-physics, Advanced, Non-ideal

Code for High-resolution simulations of

the solar Atmosphere

A Numerical Tool for Astrophysical

REsearch

Conservation Law Package

web page http://www.iac.es/proyecto/PI2FA/pages/codes.php— http://www.amath.washington.edu/ claw/

principal author Elena Khomenko H.J. Muthsam Randall J. LeVeque

language FORTRAN FORTRAN FORTRAN

MHD yes yes yes

radiative transfer yes yes/non-gray no

parallelization MPI MPI; OpenMP MPI

grid Cartesian; AMR Cartesian; spherical; AMR/static adaptive/AMR

comments: 4th order central differences; realistic

EOS.

Features various high-resolution

schemes

Features various solvers incl. Riemann

solvers; solves problems on curved

manifolds
References: https://arxiv.org/abs/1006.2998 http://arxiv.org/abs/0905.0177 https://peerj.com/articles/cs-68/
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Computer Codes (cont.)

acronym

name ZEUS-MP/2 Enzo FLASH

web page http://ascl.net/1102.028 https://enzo-project.org http://flash.uchicago.edu/website/home/

principal author Stone & Norman Michael Norman and Enzo community Alliances Center for Astrophysical

Thermonuclear Flashes
language FORTRAN — FORTRAN

MHD yes yes yes

radiative transfer no yes no

parallelization MPI yes MPI

grid Cartesian, spherical;

cylindricalAMR/static

Cartesian, AMR Cartesian, spherical, cylindrical polar;

AMR

comments: grid-based hybrid code (hydro +

N-Body), designed to simulate

cosmological structure formation; Enzo

branched off from ZEUS

HD: split PPM, unsplit

MUSCL-Hancock; MHD: split 8-wave

solver, unsplit staggered mesh; split

relativistic hydro solver; reactive gas

dynamics

References: http://adsabs.harvard.edu/

abs/2006ApJS..165..188H

— https://iopscience.iop.org/article/

10.1086/317361/pdf

acronym

name ATHENA++ RAMSES

web page https://princetonuniversity.github.io/athena/ https://www.ics.uzh.ch/ teyssier/

ramses/RAMSES.html

principal author James M. Stone Romain Teyssier

language C++ FORTRAN

MHD yes/relativistic yes

radiative transfer — no

parallelization MPI/OpenMP; task-based execution MPI

grid Cartesian, cylindrical; spherical-polar;

Various general-relativistic coordinates;

AMR

Cartesian, tree-based AMR

comments: special and general relativistic

hydrodynamics and MHD.

Self-gravitating magneto fluid dynamics

References: https://arxiv.org/abs/1711.07439 https://arxiv.org/abs/astro-ph/0111367
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Computer Codes (cont.)

Example CO5BOLD

CO
5

BOLD is designed for simulating hydrodynamics and radiative transfer in the outer

and inner layers of stars. Additionally, it can treat magnetohydrodynamics,

non-equilibrium chemical reaction networks, dynamic hydrogen ionization, and dust

formation in stellar atmospheres.
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Computer Codes (cont.)

Box in a star

Simulation of solar granulation with CO5BOLD.

400×400×165 grid cells, 11.2×11.2 Mm,

Contrast at λ ≈ 620 nm is 16.65%.

Courtesy M. Steffen, AIP Potsdam

Star in a box

Simulation of a Betelgeusew with CO5BOLD.

2353 grid cells, mstar = 12m⊙,

Teff = 3436 K, Rstar = 875R⊙

Courtesy Bernd Freytag, Uppsala
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Computer Codes (cont.)

B0

∆x = =∆z

τ = 1

2.
8 

M
m

1.4 Mm

1.4 Mm

n1 x n2 x n3 = 960 x 960 x 480
10 km

9.6 Mm

∆

9.6 Mm

y =

computational domain

surface

convection zone

convection zone base

τ = 1

Size of a typical three-dimensional computational domain (left) in comparison with the

size of the Sun (right).
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Computer Codes (cont.)

Bolometric intensity maps

With magnetic fields:

Magnetohydrodynamic simulation.

Without magnetic fields: Courtesy,

Hydrodynamic simulation F. Calvo.

C
o
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o

n
s
:
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n
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Computer Codes (cont.)

Horizontal cross-section

through the chromosphere of

a magnetic field-free

simulation. Colors show

temperature. Shock fronts and

temperature spikes are

ubiquitous.
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§ 8 Equations and boundary conditions

Starting point are the equations of magnetohydrodynamics:

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂ρv

∂t
+ ∇ ·

(

ρvv +

(

P +
B ·B

2

)

I−BB

)

= ρg ,

∂B

∂t
+ ∇ · (vB−Bv) = 0 ,

∂E

∂t
+ ∇ ·

((

E + P +
B ·B

8π

)

v − 1
4π

(v ·B)B+ Frad

)

= ρg · v .

ρ: mass density; v: velocity; P : gas pressure; B: magnetic field; g gravitational

acceleration; E: total energy density; Frad: radiative flux; t: time

E = ρeint + ekin + emag = ρeint + ρ
v · v

2
+

B ·B

2
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Equations and boundary conditions (cont.)

The equations of ideal magnetohydrodynamics in conservation law form:

∂U

∂t
+∇ ·F = S ,

where the vector of conserved variables U , the source term S due to gravity and

radiation, and the flux tensor F are

U = (ρ, ρv,B, E) , S = (0, ρg, 0, ρg · v + qrad) ,

F =












ρv

ρvv +
(

p+ B·B
8π

)

I − BB
4π

vB −Bv
(

E + p+ B·B
8π

)

v − 1

4π (v ·B)B












.
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Equations and boundary conditions (cont.)

The MHD equations must be closed by an equation of state which gives the gas

pressure as a function of the density and the thermal energy per unit mass eint = ǫ

p = p(ρ, ǫ) ,

usually available to the program in tabulated form.

In the most simplest case of a polytropic ideal gas ǫ =
P

(γ − 1)ρ
, where γ = const.

For the numerical treatment,
∂U

∂t
+∇ ·F = S is usaully solved in two steps:

(1) t → t+∆t:
∂U

∂t
+∇ ·F = 0 (2) t → t+∆t

∂U

∂t
= S

This procedure is called operator splitting.
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5. Equations and boundary conditions (cont.)

In practice it is not the ideal MHD-equations that are solved but rather some kind of a

viscous and resistive form of the equations with flux tensor

F =





















ρv

ρvv +

(

p+
B ·B

8π

)

I −
BB

4π
− σ

Bv − vB − η[∇B + (∇B)T ]
(

E + p+
B ·B

8π

)

v −
1

4π
(v ·B)B + η(j ×B)− σv + qturb





















,

where σ = νρ[(∇v) + (∇v)T − (2/3)(∇ · v)I] is the viscous stress tensor,

η = (ν/Prm) = 1/(4πσ) the magnetic diffusivity with σ being the electric

conductivity, and η(j ×B) = (η/4π)(∇×B)×B. Prm is the magnetic Prandtl

number. qturb
is a turbulent diffusive heat flux, which would typically be proportional to

the entropy gradient: qturb = −(1/Pr)νρT∇s, where Pr is the Prandtl number.
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5. Equations and boundary conditions (cont.)

Typically, ν is not taken to be the molecular viscosity coefficient but rather some

turbulent value that takes care of the dissipative processes that cannot be resolved by

the computational grid. Such subgrid-scale viscosities should only act where velocity

gradients are strong causing srong turbulence. Therefore, they typically depend on

velocity gradients like in the Smagorinsky-type of turbulent viscosity where

νt = c

{

2

[(
∂vx
∂x

)2

+

(
∂vy
∂y

)2

+

(
∂vz
∂z

)2
]

+

(
∂vx
∂y

+
∂vy
∂x

)2

+

(
∂vx
∂z

+
∂vz
∂x

)2

+

(
∂vy
∂z

+
∂vz
∂y

)2
}1/2

,

where c is a free parameter. This parameter is normally chosen as small as possible

just in order to keep the numerical integration stable and smooth, but otherwise having

no effect on large scales.
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5. Equations and boundary conditions (cont.)

Some numerical high resolution schemes feature an inherent dissipation that acts like

the explicit dissipative terms shown in the flux tensor above. This artificial viscosity is

made as small as possible but still large enough to keep the numerical scheme stable.

One then only programs the ideal equations. Of course, in this case it is difficult to

quote the actual Reynolds and Prandtl numbers because they change from grid cell to

grid cell depending on the flow. For certain applications it might be preferable to

explicitly include the dissipative terms in the equations using constant dissipation

coefficients, which yield well defined dimensionless numbers. However, one handles

this, when integrating the ideal equations on a discrete computational grid, one is

always locked with a discretization error that normally assumes the form of dissipative

terms in the non-ideal equations.

See LeVeque, Mihalas, Dorfi, & Müller (1998) for more on computational methods for

astrophysical fluid flow.
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5. Equations and boundary conditions (cont.)

Typical boundary conditions for the thermal variables and the velocities

∂vx,y,z

∂z
= 0 ( or vz = 0 ) ; lim

t→∞

ǫ = ǫ0

periodic

periodic

∂vx,y

∂z
= 0 ;

∫

ρvz dσ = 0 ; outflow: ∂s
∂z

= 0

inflow: s = s0

x

z
y

Periodic lateral boundary conditions in all variables. Open bottom boundary in the

sense that the fluid can freely flow in and out of the computational domain under the

condition of vanishing total mass flux.

Reflecting (closed) top boundary or open (transmitting) top boundary.
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Equations and boundary conditions (cont.)

Note: For a pure hydrodynamic simulation, there are only three free

parameters:

• The entropy of the inflowing material, s0, which determines the effective

temperature, Teff ;

• The chemical composition of the plasma, which determines the equation of

state and opacities;

• The surface gravity, gsurf .

For the Sun, these parameters are all fixed.
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5. Equations and boundary conditions (cont.)

Boundary conditions for the magnetic field

Bx,y = 0 ; ∂Bz
∂z

= 0

periodic

periodic

Bx,y = 0 ; ∂Bz
∂z

= 0

z

x

y

∂Bx,y,z

∂z
= 0

periodic
periodic

outflow: ∂Bx,y,z

∂z
= 0

inflow: By = Bz = 0, Bx = const.

z

x

y
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5. Equations and boundary conditions (cont.)

Boundary conditions for the magnetic field

Bx,y = 0 ; ∂Bz
∂z

= 0

periodic

periodic

Bx,y = 0 ; ∂Bz
∂z

= 0

z

x

y

∂Bx,y,z

∂z
= 0

periodic
periodic

outflow: ∂Bx,y,z

∂z
= 0

inflow: By = Bz = 0, Bx = const.

z

x

y

Note: The presence of a magnetic field introduces a continuous spectrum of

parameters regarding to the initial condition for the magnetic field or conditions

for a self exciting dynamo.
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§ 9 Radiation transfer

’

∆τ

∆τ

s2

τ ’−

τ0 −

ds

I
0I  e

I’ I’e

τ

1s

τ =   κρ

τ

r0

s1 s2

τ0

τ ’,
κν : opacity per unit mass [cm

2
g
−1

]

τ : optical distance to r

Formal solution of the

radiative transfer equation

I(r,n) = I0e
−(τ0−τ)+

∫ τ0

τ

S(τ ′) e−(τ ′−τ)dτ ′

For short: I(r,n) = ΛS (Lambda operator)

The radiative transfer equation
dIν
dτν

= Iν − Sν
dIν
ds

=−κνρ(Iν−Sν)

I = I(r, n̂, ν, t) has dimension [ erg cm−2 s−1 hz−1 sr−1]
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Radiation transfer (cont.)

Radiative flux Frad =

∫

4π

∞∫

0

I(r, n̂, ν)n̂ dν dω [erg cm
−2

s
−1]

Using the radiative transfer equation we obtain for the divergence of the radiative flux:

∇ · Frad =

∫

4π

∞∫

0

(n̂ · ∇)I(r, n̂, ν) dν dω

=

∫

4π

∞∫

0

(κ(r, ν)ρ(r)S(r, ν)− κ(r, ν)ρ(r)I(r, n̂, ν)) dν dω

= 4π

∞∫

0

κ(r, ν)ρ(r)(S(r, ν)− J(r, ν)) dν = −qrad

With J(r, ν) =
1

4π

∫

4π

I(r, n̂, ν) dω being the mean intensity .
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Radiation transfer (cont.)

qrad (per unit mass) in a vertical section through a 3D solar model. z = 1.3Mm

corresponds to 〈τ500〉 = 1. Dark/bright shades indicate radiative cooling/heating.

From Steffen (2017).
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Radiation transfer (cont.)

Integration on long characteristics

−

I

HD grid RT ray systemI

+

HD grid: ρ, e
EOS
→ p, T → source function S, opacity ρκ

→ interpolation → RT Rays system: S, ρκ

→ solve RT for yν = (1/2)(I+ν + I−ν )− Sν (Feautrier scheme)

RT Ray system: ρκyν = qθ,φrad → flux conservative back-interpoation

→ HD grid: qθ,φrad →
∑

θ,φ q
θ,φ
rad = qrad
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Radiation transfer (cont.)

Integration on short characteristics

k+1/2

ce
ll

hydro

k−3/2

k−1/2

−

+

i+1

k−1

k+1

I

i−2

I

i+2ii−1

RT ray systemHD grid

k

k−2

RT Rays system: start at top compute I−, start at bottom compute I+

→ qrad(θ, φ) = q−rad(θ, φ) + q+rad(θ, φ)

important: flux conservative interpolation of intensities
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Radiation transfer (cont.)

Conservation of radiative flux

k+1/2

ce
ll

hydro

k−3/2

k−1/2

−

+

i+1

k−1

k+1

I

i−2

I

i+2ii−1

RT ray systemHD grid

k

k−2

∫

x

∫

y
F

k− 1
2

rad dxdy −

∫

x

∫

y
F

k+ 1
2

rad dxdy =

∫

x

∫

y

∫ zk−1/2

zk+1/2

−qrad(x, y, z) dxdy dz

Adapted from Steffen (2017).
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Radiation transfer (cont.)

K8V

K2V

G2V

F5V

- “Box in a star” simulations of

the surface layers of four

spectral types;

- Each simulation is run twice :

with and without magnetic

fields;

- Initial vertical homogeneous

field of 50 G and 100 G ;

- Multi-group radiation transfer

using 5 opacity bins;

- From Salhab et al. (2018,

A&A 614, A78).
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§ 10 Multi-group radiation transfer Nordlund, 1982; Ludwig, 1992

qrad = −∇ · F rad = 4πρ

∫

κλ(Jλ − Bλ) dλ ,

∫

κλ(Jλ −Bλ) dλ =
∑

j

κλj (Jλj −Bλj )wλj

=
∑

i

∑

j(i)

κλj (Jλj −Bλj )wλj

=
∑

i

∑

j(i)

κλj (Λλj(Bλj )−Bλj )wλj

≈
∑

i

κi(Λi − 1)(
∑

j(i)

Bλj wλj )

.
=

∑

i

κi(Λi − 1)(Bi wi)
.
=

∑

i

κi(Ji −Bi)wi
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Multi-group radiation transfer (cont.)

Strategy for opacity binning:

- concentrate on radiative transfer in vertical direction,

- group together frequencies with as similar a τν(s)-relationship as

possible, so that Λλj(i)
is very similar ∀j of a given bin i,

- choose clever averaging procedure for κν , (Rosseland averages for

τi > 1, Planck averages for τi < 1).

See also Nordlund, Å: 1982, A&A 107,1; Ludwig, H.-G.: 1992, thesis Univ.

Kiel ; Vögler et al.: 2004, A&A 421, 741; Hayek et al.: 2010, A&A 517,A49.
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Multi-group radiation transfer (cont.)

Testing the OBM. Integrated radiative flux

C
o

u
rt

e
s
y,

M
.

S
te

ff
e

n
.
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Multi-group radiation transfer (cont.)

Intensity maps for different opacity bins

C
o

u
rt

e
s
y,

M
.

S
te

ff
e

n
.

Notice that bin 3 to 5 show “inverse granulation” as their opacities represent

medium to strong line cores.
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§ 11 Heat conduction

If the transition region and corona is to be included in the simulation, heat conduction

must be taken into account as an important mode of energy transport. For a fully

ionized plasma, the heat flux (carried by the electrons) is given by

Fc = −κ0T
5/2∇||T ,

where the gradient of T is taken along the magnetic field (∇||) and κ|| = κ0T
5/2

is

the Spitzer (1956) coefficient for thermal conduction along the magnetic field. The

conductive part of the energy equation is typically handled in a separate operator

splitting step

∂E

∂t
= −∇ · F c = −∇||

[

κ0T
5/2∇||T

]

.

Since this is a parabolic partial differential equation, the CFL condition scales ∝ ∆x2

instead of ∝ ∆x as for hyperbolic equations. This means, it must be solved with an

implicit numerical scheme to achieve tolerable time stepping.
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Heat conduction (cont.)

The second important ingredient is a (optically thin) radiative loss function, which takes

care of the radiative loss (qrad) in the tenuous atmosphere from the upper

chromosphere up to the corona. It can be approximated as

qrad,thin = −nHnef(T )e
−P/P0 .

nH and ne are the number densities of H and electrons, respectively, f(T ) is a

function of the temperature and exp(−P/P0) provides a cutoff where P > P0.
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Heat conduction (cont.)

Two-dimensional Bifrost simulation from the top of the convection zone to the corona,

including the transition region (transition from reddish to white colors). The color

shading indicate the temperature above the lower white curve (τc = 1). Below it, the

colors indicate the vertical velocity, downflows being red. The upper white curve

indicates β = 1. Above it the magnetic field (black field lines) dominates the gas

pressure. From Hansteen & Carlsson (2005).
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Heat conduction (cont.)

Two-dimensional Bifrost simulation from the top of the convection zone to the corona,

including the transition region (transition from reddish to white colors). The color

shading indicates the temperature. Courtesy, D. Nóbrega Siverio.
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§11 Heat conduction (cont.)

Three-dimensional CO
5
BOLD radiation-hydrodynamic simulation of surface convection

including chromospheric layers and weak magnetic fields. The dimensions of the

vertical section are: Width, 9600 km; Height above the surface of τ = 1, 1600 km;

Depth below this surface level: 1200 km. Colores indicate the temperature. No

transition region is present.

Courtesy, F. Calvo, IRSOL
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§ 12 Non-equilibrium Hydrogen ionization

Under the condition of the dynamic solar chromosphere, the assumption of statistical

equilibrium

ni

N∑

j 6=i

Pij

︸ ︷︷ ︸

transitions from i to other levels

=
N∑

j 6=i

njPji

︸ ︷︷ ︸

transitions from others to level i

.

is not valid anymore. Instead the dynamic change in level populations and ionization of

H and He must be taken into account. We then solve the time-dependent rate equations

∂ni

∂t
+∇ · (niv) =

nl∑

j 6=i

njPji − ni

nl∑

j 6=i

Pij

Pij = Cij +Rij , where we assume that the radiation field in each transition, both,

bound-bound and bound-free, can be described by a formal radiation temperature

Trad.
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Non-equilibrium Hydrogen ionization (cont.)

In the method of fixed radiative rates (Sollum 1999), we assume that the

radiation field in each transition, both, bound-bound and bound-free, can be

described by a formal radiation temperature:

Jν =
2hν3

c2
1

ehν/kTrad − 1

Thus, we obtain the fixed radiative rates for bound-bound transitions

Rlu = BluJν0
=

4π2e2

hν0mec
flu

2hν30
c2

1

ehν0/kTrad − 1

Rul = Aul +BulJν0 =
gl
gu

e
hν0/kTradRlu

Blu: Einstein coefficient for radiative excitation; flu: oscillator strength;

Aul, Bul: Einstein coefficient for spontaneous and stimulated deexcitation,

respectively; gl,u: statistical weights of the lower and upper level.
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Non-equilibrium Hydrogen ionization (cont.)

The hydrogen bound-free excitations have a Kramer’s absorption cross section:

σic(ν) = α0

(ν0
ν

)3

, ν > ν0 ,

where α0 is the absorption cross-section at the edge frequency ν0. In this case the

radiative rate coefficients are

Ric = 4π

∫ ∞

ν0

σic(ν)

hν
Jνdν =

8π

c2
α0ν

3
0

∫ ∞

ν0

1

ν

1

ehν/kTrad − 1
dν

=
8π

c2
α0ν

3
0

∞∑

n=1

E1

[

n
hν0
kTrad

]

, E1 being the first exponential integral

Rci = 4π

[
ni

nc

]

LTE

∫ ∞

ν0

σic(ν)

hν

(
2hν3

c2
+ Jν

)

e−hν/kTedν

=
8π

c2
α0ν

3
0

[
ni

nc

]

LTE

∞∑

n=1

E1

[(

n
Te

Trad
+ 1

)
hν0
kTe

]

.
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Non-equilibrium Hydrogen ionization (cont.)

Effect of dynamic H-ionization in the upper part of a 2-D simulation. Left column: LTE

ionization degree and electron density. Right column: Corresponding time-dependent

NLTE quantities. Bottom left: Gas temperature, which is the same for the LTE and the

time-dependent case. From Leenaarts & Wedemeyer-Böhm 2006.

toc ref



§ 13 Chemical reaction network

For certain applications, e.g., the effect of CO in the solar atmosphere, an optional

module for the treatment of a network of chemical reactions was added to the

CO
5
BOLD code. For further details see Wedemeyer-Böhm et al. (2005), A&A 438,

1043 and Wedemeyer-Böhm & Steffen (2007), A&A 462, L31.

The operator splitting method is used in order to account for the time evolution of

chemical species. In a first step the chemical species are advected together with all the

other hydrodynamic quantities:

∂ni

∂t
+∇ · (niv) = 0 ,

where ni is the number density of a chemical species and v the velocity of the

hydrodynamical flow.

toc ref



Chemical reaction network (cont.)

In a second step (between the hydro step and the radiation-transfer step), the change in

number density due to chemical reactions is accounted for:
(
∂ni

∂t

)

chem

= −ni

∑

j

k2,ij nj

+
∑

j

∑

l

k2,jl njnl

−nj

∑

j

∑

l

k3,ijl njnl

+
∑

j

∑

l

∑

m

k3,jlm njnlnm ,

where ni is the number densities of species i, which decreases or increases due to

two-body reactions with rates k2,ij and k2,jl, respectively. Three-body reactions are

analogously accounted for by the third and fourth term with rates k3,ijl and k3,jlm. It

results in a (stiff!) system of of ordinary differential equations.
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Chemical reaction network (cont.)

The rates have the basic form

k = αT β
300 e

−γ/T ,

where T300 = T/300K. For catalytic reactions the number density of a representative

metal nM enters: The rates have the basic form

k = nMαT β
300 e

−γ/T .

The coefficients α, β, and γ are compiled in tables, e.g., in Wedemeyer-Böhm et

al. (2005), A&A 438, 1043
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Chemical reaction network (cont.)

Chemical reaction network:

7 chemical species, H, H2,

C, O, CO, CH, OH, plus

a representative metal M

and 27 chemical reactions.

From Wedemeyer-Böhm et

al. (2005), A&A 438, 1043
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Chemical reaction network (cont.)

Radiative cooling via CO lines:

- Two opacity bands:

1.) continuum band with Rosseland mean opacity κR without infrared.

2.) infrared band at 4.7µm with Rosseland mean opacity plus CO line opacity,

κR + κCO .

- CO opacity calculated from (time dependent) CO number density.

Application examples:

- movie of CO number density in two-dimensional hydrodynamic solar convection.

- animation of “CO clouds” from a three-dimensional simulation.
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Part IV: MHD simulations: Case studies
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§ 14 Basic postdictions

Observation of the solar surface Numerical simulation
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Basic postdictions (cont.)
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Basic postdictions (cont.)
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Synthetic Fe I spectral lines in comparison to the atlas.
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§ 15 Postdiction: Stokes-V asymmetry

Apparent vertical magnetic flux density BL
app of the quiet Sun over a field of view of

302′′ × 162′′ observed from the Hinode space observatory. The grey scale saturates

at ±50 Mx cm
−2

. 2048 steps to 5 s. From Lites et. al. 2008, ApJ 672, 1237
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Postdiction: Stokes-V asymmetry (cont.)

Stokes-V profiles across a magnetic element of the internetwork from the Hinode data.

A

Ar

b
a

ar

b

V

λ

zcv

δA :=
Ab −Ar

Ab +Ar

sign(δA) = −sign(
d|B|

dτ
·
dv(τ)

dτ
)

Solanki & Pahlke, 1988; Sanchez Almeida

et al., 1989
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Postdiction: Stokes-V asymmetry (cont.)
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Columns a-c: observational data obtained with the spectro-polarimeter of Hinode/SOT. Columns d

and f : synthetic data from the 3-D MHD simulation. Columns e and g: same as d and f but after

application of the SOT-PSF to the synthetic intensity maps. Distance between tick marks is 0.5′′.

From Rezaei, Steiner, Wedemeyer-Böhm et al. 2007, A&A 476, L33
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Postdiction: Stokes-V asymmetry (cont.)
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Variation in δA across magnetic elements from the Hinode data (top row) and the

simulation (bottom row).
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Postdiction: Stokes-V asymmetry (cont.)
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⇒ δA > 0

Vertical cross section through the sim-

ulation box. Colour displays the

logarithmic magnetic field strength,

arrows the velocity field, black contours

the electric current density normal to

the plane. The white vertical lines

indicate ranges of either positive or

negative area asymmetry, δA.
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§ 16 Postdiction: Stokes-V amplitude ratio

Continuum intensity at 630 nm over a field of view of 302′′ × 162′′ recorded with

Hinode/SOT/SP. 2048 slit positions. From Lites et. al. 2008, ApJ 672, 1237
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Postdiction: Stokes-V amplitude ratio (cont.)

Apparent vertical magnetic flux density, BL
app, of the quiet Sun over a field of view of

302′′ × 162′′. 2048 steps to 4.8 s. Maps of Fe I 630.15 and 630.25 nm.

From Lites et. al. 2008, ApJ 672, 1237
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Postdiction: Stokes-V amplitude ratio (cont.) observational data

Scatter plot of the blue lobe Stokes-V amplitudes of the 6302.5 Å line vs. the

6301.5 Å line as observed with Hinode/SOT/SP. The dashed line is the

regression relation expected for weak magnetic fields. We identify two

populations of points. From Stenflo (2011) A&A 529 A42. ⇒ Section at 1%
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Postdiction: Stokes-V amplitude ratio (cont.): simulation data

Scatter plot of the Stokes-V line ratio from the simulation. Left: full resolution;

Right: degraded with the SOT/SP point spread function. From Steiner & Rezaei (2012).

Scatter plot of the Stokes-V line ratio from a

mixed polarity simulation.
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“It is nice to know that the computer understands the problem,

but I would like to understand it too.”

Attributed to E.P. Wigner

meaning:

“It is nice to know that our simulations reproduce the observations,

but what can we learn from it?”
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Postdiction: Stokes-V amplitude ratio (cont.)

F
ro

m
S

te
in

e
r

&
R

e
z
a

e
i
(2

0
1

2
)

Conclusion: The two populations can be explained in terms of weak (hectogauss)

magnetic fields. Numerical simulations are indispensable for the correct interpretation.
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Maurizio Nannucci, Neon installation in the court of the Museo Novecento, Florence



Postdiction: Stokes-V amplitude ratio (cont.)

Case studies I and II are typical examples of post diction: Something that was

observed got reproduced by simulations, which helped us to better understand

and interpret the observation.

The next paragraph treats an example of prediction.
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§ 17 Prediction: Non-magnetic bright points

Bolometric intensity maps

With magnetic fields:

Magnetohydrodynamic simulation

Without magnetic fields: Courtesy,

Hydrodynamic simulation F. Calvo
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Prediction: Non-magnetic bright points (cont.)

Slices across a non-magnetic bright point (nMBP0868)
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Emergent intensity I (top left), temperature T (bottom), density log(ρ) (right)
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Prediction: Non-magnetic bright points (cont.)

Slices across a non-magnetic bright point (nMBP0868)
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Prediction: Non-magnetic bright points (cont.)

Density (blue: low, red: high) and velocity field in an

horizontal plane, 150 [km] below 〈τ〉 = 1

non-magnetic bright points

(nMBPs) are locations with:

- swirling motion (but

≈ 150 [km] below τ = 1

there are often swirls that do

not produce nMBPs);

- low density (but a density

deficiency alone does not

warrant nMBP’s);

- high intensity contrast (but a

local intensity peak does not

need to be a nMBP).

From F. Calvo et al. 2016.
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Prediction: Non-magnetic bright points (cont.)

>
e

ρ
i

ρ
pe +pmagi= p

c=1τc
(’solar surface’)
τ =1

Magnetic flux sheet . Depression due to

magnetic pressure.

>ρ
e i

ρ

θi
2

i
ρ+  vpep = 2

=1 cτ τ =1c
(’solar surface’)

Swirl . Depression due to centrifugal

force.

In both cases is the ‘hot wall effect’ responsible for the enhanced radiation from the

depression.
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Prediction: Non-magnetic bright points (cont.)

Reduction to an analytical toy model

Starting from the momentum equation

∂v

∂t
+ (v ·∇) v +

1

ρ
∇P + g = 0 ,

we assume

1. nMBPs are long-lived and stable so that the velocity field can be considered

stationary;

2. They have cylindrical symmetry;

3. Their velocity field has a non-vanishing azimuthal component;

4. They extend in the vertical direction and their shape does not depend on depth.

Because of 2., the Euler momentum equation can be written in cylindrical coordinates.
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Prediction: Non-magnetic bright points (cont.)

Reduction to an analytical toy model

The advection term is then given by

(v ·∇)v =

[

(v ·∇)vr −
v2θ
r

]

r̂ +

[

(v ·∇)vθ +
vθvr
r

]

θ̂ + (v ·∇)vzẑ ,

where the directional derivative is

v ·∇ = vr∂r +
vθ
r
∂θ + vz∂z .

The simplest field satisfying the conditions 1–4 is v = vθ (r) θ̂. Inserting it into the

Euler momentum equation and projecting it into the horizontal plane yields

∂P

∂r
− ρ

v2θ
r

= 0 .

The pressure gradient is provided by the centripetal force.
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Prediction: Non-magnetic bright points (cont.)

Reduction to an analytical toy model

One can then estimate the magnitude of vθ . With

Pext − Pint

ρext
≈ v2θ ,

ρint − ρext
ρext

≡ Cρ ,
Tint − Text

Text
≡ CT ,

Pext

ρext
≈ Rs Text , Text ≈ Teff ,

one obtains with Cρ ≈ −0.5 and CT ≈ 0

vθ =
√

Rs Teff [1− (1 + Cρ)(1 + CT )] ≈

√

Rs Teff

2
= 4.4 km s

−1 ,

while the maximum azimuthal velocities in the simulation are vmax
θ ≈ 6 kms−1

.
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Prediction: Non-magnetic bright points (cont.)
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Intensity contrast across a

non-magnetig bright point as

observed with different

telescopes.

From Calvo et al. (2016).
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§ 18 Prediction: Stellar photometric variability

K8V

K2V

G2V

F5V

- “Box in a star” simulations of the

surface layers of four spectral

types;

- Each simulation is run twice :

with and without magnetic fields;

- Initial vertical homogeneous

field of 50 G and 100 G ;

- Multi-group radiation transfer

using 5 opacity bins;

- Numerical, non-stationary,

three-dimensional radiation

magnetohydrodynamics using

the CO
5
BOLD code.
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Prediction: Stellar photometric variability (cont.)

K8V

cbol rms =
5.6 %

B0, v50

K2V

cbol rms =
9.8 %

B0, v50

From Salhab

et al. (2017)
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Prediction: Stellar photometric variability (cont.)

G2V

cbol rms =
15.3 %

B0, v50

F5V

cbol rms =
18.7 %

B0, v50

From Salhab

et al. (2017)
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Prediction: Stellar photometric variability (cont.)

100 km

p+pmagiep
i

ρ
e

ρ >

=

=1cτ τc

τc

=1 ‘solar surface’

Bz 0(z )

Bz(   =1)

p

WD

H

Magnetic flux

concentration

(green) with optical

surface τc = 1

(blue), and “Wilson

depression” WD.

Conclusion: Bz(τR = 1) ≈ 1550 [G] is fairly

independent of spectral type
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Prediction: Stellar photometric variability (cont.)

Magnetic flux sheath in a

LOS

mag+ppipe

ρ
ie

ρ

=

>

=1τc

K-type atmosphere

Small depression of the τc = 1 surface

⇒ weak hot-wall effect .

Weak evacuation

⇒ faint facular granules.

LOS

mag+ppipe

ρ
ie

ρ

=

>

=1τc

G-type atmosphere.

Large depression of the τc = 1 surface

⇒ strong hot-wall effect .

Strong evacuation

⇒ bright facular granules.
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Prediction: Stellar photometric variability (cont.)

spectral type K8V K2V G2V F5V

initial Bz [G] 50 50 50 50

25 δIbol [%] 0.25±0.2 0.68±0.9 0.88±1.1 0.53±0.8

26 δFbol [%] 0.39 ±0.2 0.86 ±0.9 1.15 ±1.1 0.95 ±0.8

27 δFbol − δIbol [%] 0.14 0.18 0.27 0.42

30 WDw [km] 60±14 139±34 232±65 388±113

31 WDw/Hp(τR = 1) [-] 0.7±0.1 1.3±0.3 1.4±0.3 2.6±0.7

15 ρint/ρext(z0) [-] 0.75±0.02 0.54±0.03 0.46±0.04 0.36±0.05

16 β(z0) [-] 2.7±0.2 1.3±0.1 0.74±0.1 0.38±0.1

Radiative surplus of the magnetic over the field-free models, weighted mean

Wilson depression, and degree of evacuation of the flux concentrations.
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Prediction: Stellar photometric variability (cont.)

Conclusion: For spectral types K8V to F5V, the small-scale

magnetic fields produce a surplus in radiative intensity and flux .

It is most pronounced for G-type and early K-type stars.
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Prediction: Stellar photometric variability (cont.)

In the last two examples, numerical simulations served to make a prediction.

Because the simulations faithfully reproduce observed features like granules,

the granular rms intensity contrast, or the shape of spectral lines, we can with

some confidence predict new features, like swirling non-magnetic bright points,

to really exist on the Sun. The complex structure of the non-magnetic bright

points found in the simulations got reduced to an analytical toy model .

The next paragraph treats an example of virtual experimentation. Since we

cannot take the Sun in the laboratory and since we cannot travel to the Sun

and cary out experiments in situ, we reconstruct it in the computer for carrying

out experiments.
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§ 19 Experiment: MHD wave conversion
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Temperature (colors), velocity (arrows),

and optical depth τc = 1 (dashed curve).

Magnetic field strength (gray scales), level

where cs = cA (white contour), locations

of local wave excitation (crosses).

Movies of wave excitation at ×i, ×ii, ×iii, and along the lower boundary.

From Nutto et al., 2012 A&A 538, A79.

toc ref



Experiment: MHD wave conversion (cont.)

Time instant of a spherical, fast acoustic

wave, initiated by a local pressure per-

turbation in the convection zone. When

the wave encounters the low beta mag-

netic flux concentration in the photo-

sphere, it partially converts into a fast

magnetic mode, which shows the typi-

cal “faning out” already encountered in

the 2-D simulation. Colors show abso-

lute velocity perturbation.

Courtesy Christian Nutto, KIS.
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§ 19.1 Magnetic halos and shadows

Left: FOV of 6.6′′ × 6.6′′ in white light. Right: Magnetic field strength at 〈τc〉 = 1.

Contours: Equipartition level where cs = cA. From Nutto et al. 2012, A&A 542, L30.
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Magnetic halos and shadows (cont.)

b)a)

Power maps of the vertical velocity perturbations, δvz , taken at a) τc = 8 · 10−4
and

b) τc = 6.7 · 10−5
. The white contours shows the equipartition level cs = cA. The

ellipses mark regions where the magnetic shadow can be identified. Note suppression

of power in the region between the large and the small ellipses. From Nutto et al. 2012.
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Magnetic halos and shadows (cont.)

a) Broadband continuum at 710 nm. e) Line core intensity of CaII 854.2 nm. b)–d) and f)–h)

Logarithm of the Fourier Doppler-velocity power averaged over the indicated range of frequencies

of the photospheric line Fe I 709.0 nm (b)–d)) and the chromospheric line Ca II 854.2 nm (f)–h)).

From Vecchio, Cauzzi, Reardon et al. (2007), A&A 461, L1. obtained with IBIS at DST.
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Magnetic halos and shadows (cont.)
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magneticmagnetic magnetic

shadow
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Sketch of the three different magneto-acoustic modes that lead to the phenomenon of

the magnetic shadow and the magnetic halo.
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