NLTE effects in spectral line formation

Jaime de la Cruz Rodríguez

Institute for Solar Physics - Stockholm University

Most chromospheric lines sample a vast range of heights in the solar atmosphere

SST/CHROMIS - 400 nm continuum

Most chromospheric lines sample a vast range of heights in the solar atmosphere SST/CHROMIS - Ca II K +313 mÅ

Most chromospheric lines sample a vast range of heights in the solar atmosphere SST/CHROMIS - Ca II K (core)

Spectral lines encode information of the plasma conditions

SST/CHROMIS Ca II K (wing) 12 r I [nW m $^{-2}$ Hz $^{-1}$ Sr $^{-1}$] y [arcsec] -1 $\lambda - \lambda_0$ [Å] x [arcsec]

LTE populations in the photosphere / NLTE populations in the chromosphere

LTE vs NLTE line formation

LTE vs NLTE line formation

• **B** • η_0 • $\frac{dS}{ds}$

 $\Delta \nu_D, v_{1.o.s}, \ldots$

In this case, we can fit the observations with a *constant* $m{B}$ (over time) and a varying source function

Why don't we see that effect (in an obvious manner) in the photosphere?

Why don't we see that effect (in an obvious manner) in the photosphere?

NLTE electron densities in the chromosphere

Electrons are the main source of collisions: they move fast (low mass) and there are many! Each element contributes to the electron density depending on the ionization degree

In the photosphere collisional rates are large: we can assume LTE in most situations

Saha:
$$(\frac{n_z^{r+1}}{n_z^r}) = \frac{1}{n_e} \frac{2U^{r+1}}{U^r} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_r/kT}$$

 $(n_e) = \sum_{z} \sum_{r>1} n_z^r)$

We can compute how many electrons come from each element and iterate n_{ρ} .

NLTE electron densities in the chromosphere

In the chromosphere the main electron donor is hydrogen, which cannot be modelled in LTE.

By assuming n_e^{LTE} , we overestimate/ underestimate collisional rates and also the coupling to the local conditions

NLTE electron densities in the chromosphere

In the chromosphere the main electron donor is hydrogen, which cannot be modelled in LTE.

To take home

- In the chromosphere the dramatic time variability observed in Stokes V can be explained with a *relatively* constant magnetic field vector over time.
- NLTE electron densities have a large impact in the chromosphere as they affect collisional rates of the atom under consideration.